The main result is that for λ strong limit singular failing the continuum hypothesis (i.e. ), a polarized partition theorem holds.
@article{bwmeta1.element.bwnjournal-article-fmv155i2p153bwm, author = {Saharon Shelah}, title = {A polarized partition relation and failure of GCH at singular strong limit}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {153-160}, zbl = {0897.03050}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i2p153bwm} }
Shelah, Saharon. A polarized partition relation and failure of GCH at singular strong limit. Fundamenta Mathematicae, Tome 158 (1998) pp. 153-160. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i2p153bwm/
[00000] [EHR] P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196. | Zbl 0158.26603
[00001] [BH] J. Baumgartner and A. Hajnal, Polarized partition relations, preprint, 1995.
[00002] [J] T. Jech, Set Theory, Academic Press, New York, 1978.
[00003] [Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press, 1994.
[00004] [Sh 430] S. Shelah, Further cardinal arithmetic, Israel J. Math. 95 (1996), 61-114. | Zbl 0864.03032
[00005] [Sh 420] S. Shelah, Advances in cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer Acad. Publ., 1993, 355-383. | Zbl 0844.03028
[00006] [Sh 108] S. Shelah, On successors of singular cardinals, in: Logic Colloquium '78 (Mons, 1978), Stud. Logic Found. Math. 97, North-Holland, Amsterdam, 1979, 357-380.