Distinguishing two partition properties of ω1
Komjáth, Péter
Fundamenta Mathematicae, Tome 158 (1998), p. 95-99 / Harvested from The Polish Digital Mathematics Library

It is consistent that ω1(ω1,(ω:2))2 but ω1(ω1,ω+2)2.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212246
@article{bwmeta1.element.bwnjournal-article-fmv155i1p95bwm,
     author = {P\'eter Komj\'ath},
     title = {Distinguishing two partition properties of $\omega$1},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {95-99},
     zbl = {0894.03023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p95bwm}
}
Komjáth, Péter. Distinguishing two partition properties of ω1. Fundamenta Mathematicae, Tome 158 (1998) pp. 95-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p95bwm/

[00000] [1] J. E. Baumgartner and A. Hajnal, A proof (involving Martin's axiom) of a partition relation, Fund. Math. 78 (1973), 193-203. | Zbl 0257.02054

[00001] [2] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.

[00002] [3] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. | Zbl 0025.31002

[00003] [4] P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489. | Zbl 0071.05105

[00004] [5] A. Hajnal, Some results and problems on set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277-298. | Zbl 0106.00901

[00005] [6] S. Todorčević, Forcing positive partition relations, Trans. Amer. Math. Soc. 280 (1983), 703-720. | Zbl 0532.03023