Let B(κ,λ) be the subalgebra of P(κ) generated by . It is shown that if B is any homomorphic image of B(κ,λ) then either or ; moreover, if X is the Stone space of B then either or . This implies the existence of 0-dimensional compact spaces whose cardinality and weight spectra omit lots of singular cardinals of “small” cofinality.
@article{bwmeta1.element.bwnjournal-article-fmv155i1p91bwm, author = {Istvan Juh\'asz and Saharon Shelah}, title = {On the cardinality and weight spectra of compact spaces, II}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {91-94}, zbl = {0896.54001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p91bwm} }
Juhász, Istvan; Shelah, Saharon. On the cardinality and weight spectra of compact spaces, II. Fundamenta Mathematicae, Tome 158 (1998) pp. 91-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p91bwm/
[00000] [vD] E. K. van Douwen, Cardinal functions on compact F-spaces and on weakly countably complete Boolean algebras, Fund. Math. 114 (1981), 235-256. | Zbl 0506.54006
[00001] [J] I. Juhász, On the weight-spectrum of a compact space, Israel J. Math. 81 (1993), 369-379. | Zbl 0799.54002