For any a countable sequential topological group of sequential order α is constructed using CH.
@article{bwmeta1.element.bwnjournal-article-fmv155i1p79bwm, author = {Alexander Shibakov}, title = {Sequential topological groups of any sequential order under CH}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {79-89}, zbl = {0935.54026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p79bwm} }
Shibakov, Alexander. Sequential topological groups of any sequential order under CH. Fundamenta Mathematicae, Tome 158 (1998) pp. 79-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p79bwm/
[00000] [DP] S. Dolecki and R. Peirone, Topological semigroups of every countable sequential order, in: Recent Developments of General Topology and its Applications, Akademie-Verlag, 1992, 80-84. | Zbl 0799.22002
[00001] [F] L. Foged, Sequential order of homogeneous and product spaces, Topology Proc. 6 (1981), 287-298. | Zbl 0517.54021
[00002] [M] E. Michael, A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91-138. | Zbl 0238.54009
[00003] [N] P. J. Nyikos, Metrizability and Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), 793-801. | Zbl 0474.22001
[00004] [P] R. Peirone, Regular semitopological groups of every countable sequential order, Topology Appl. 58 (1994), 145-149. | Zbl 0837.54022
[00005] [S1] A. Shibakov, Sequential group topology on rationals with intermediate sequential order, Proc. Amer. Math. Soc. 124 (1996), 2599-2607. | Zbl 0865.54022
[00006] [S2] A. Shibakov, Metrizability of sequential topological groups with point-countable k-networks, Proc. Amer. Math. Soc., to appear. | Zbl 0903.54016