The sequential topology on complete Boolean algebras
Główczyński, Wiesław ; Balcar, Bohuslav ; Jech, Thomas
Fundamenta Mathematicae, Tome 158 (1998), p. 59-78 / Harvested from The Polish Digital Mathematics Library

We investigate the sequential topology τs on a complete Boolean algebra B determined by algebraically convergent sequences in B. We show the role of weak distributivity of B in separation axioms for the sequential topology. The main result is that a necessary and sufficient condition for B to carry a strictly positive Maharam submeasure is that B is ccc and that the space (B,τs) is Hausdorff. We also characterize sequential cardinals.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212243
@article{bwmeta1.element.bwnjournal-article-fmv155i1p59bwm,
     author = {Wies\l aw G\l \'owczy\'nski and Bohuslav Balcar and Thomas Jech},
     title = {The sequential topology on complete Boolean algebras},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {59-78},
     zbl = {0910.28004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p59bwm}
}
Główczyński, Wiesław; Balcar, Bohuslav; Jech, Thomas. The sequential topology on complete Boolean algebras. Fundamenta Mathematicae, Tome 158 (1998) pp. 59-78. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p59bwm/

[00000] [AnCh] M. Antonovskiĭ and D. Chudnovsky, Some questions of general topology and Tikhonov semifields II, Russian Math. Surveys 31 (1976), 69-128.

[00001] [BlJe] A. Blass and T. Jech, On the Egoroff property of pointwise convergent sequences of functions, Proc. Amer. Math. Soc. 98 (1986), 524-526. | Zbl 0601.54004

[00002] [En] R. Engelking, General Topology, 2nd ed., PWN, Warszawa, 1985.

[00003] [Fr0] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, 1984. | Zbl 0551.03033

[00004] [Fr1] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, Vol. 3, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989, 877-980.

[00005] [Fr2] D. H. Fremlin, Real-valued measurable cardinals, in: Set Theory of the Reals, H. Judah (ed.), Amer. Math. Soc., 1993, 151-304.

[00006] [Gł] W. Główczyński, Measures on Boolean algebras, Proc. Amer. Math. Soc. 111 (1991), 845-849. | Zbl 0718.03041

[00007] [HeRo] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer, 1963. | Zbl 0115.10603

[00008] [Je] T. Jech, Set Theory, Academic Press, 1978.

[00009] [KeTa] H. J. Keisler and A. Tarski, From accessible to inaccessible cardinals, Fund. Math. 53 (1964), 225-308. | Zbl 0173.00802

[00010] [Ke] J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177. | Zbl 0087.04801

[00011] [Ko] S. Koppelberg, General Theory of Boolean Algebras, Vol. 1 of Handbook of Boolean Algebras, J. D. Monk and R. Bonnet (eds.), North-Holland, Amsterdam, 1989.

[00012] [Ma] D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. 48 (1947), 154-167. | Zbl 0029.20401

[00013] [Na] K. Namba, Independence proof of (ω,ω1)-WDL from (ω,ω)-WDL, Comment. Math. Univ. St. Paul. 21 (2) (1972), 47-53.

[00014] [Pl] G. Plebanek, Remarks on measurable Boolean algebras and sequential cardinals, Fund. Math. 143 (1993), 11-22. | Zbl 0788.28003

[00015] [Pr] K. Prikry, On σ-complete prime ideals in Boolean algebras, Colloq. Math. 22 (1971), 209-214. | Zbl 0252.06011

[00016] [Ro] F. Rothberger, On families of real functions with a denumerable base, Ann. of Math. 45 (1944), 397-406. | Zbl 0061.09507

[00017] [To] S. Todorčević, Some partitions of three-dimensional combinatorial cubes, J. Combin. Theory Ser. A 68 (1994), 410-437. | Zbl 0812.03022

[00018] [Tr] V. Trnková, Non-F-topologies, PhD thesis, Prague, 1961 (in Czech).

[00019] [Vl] D. A. Vladimirov, Boolean Algebras, Nauka, Moscow, 1969 (in Russian).