The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = u,v ≥ 0: u+v ≤ 4. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ v=0 form a dense subset of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.
@article{bwmeta1.element.bwnjournal-article-fmv155i1p45bwm, author = {Grzegorz \'Swirszcz}, title = {On a certain map of a triangle}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {45-57}, zbl = {0907.58040}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p45bwm} }
Świrszcz, Grzegorz. On a certain map of a triangle. Fundamenta Mathematicae, Tome 158 (1998) pp. 45-57. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p45bwm/
[00000] [1] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Basel, 1980. | Zbl 0458.58002
[00001] [2] A. Douady et J. Hubbard, Itération des polynômes quadratiques complexes, C. R. Acad. Sci. Paris 294 (1982), 123-126.
[00002] [3] R. Lozi, Un attracteur étrange du type attracteur de Hénon, J. Phys. 39 (1978), suppl. au no. 8, 9-10.