Topological invariance of the Collet–Eckmann property for S-unimodal maps
Nowicki, Tomasz ; Przytycki, Feliks
Fundamenta Mathematicae, Tome 158 (1998), p. 33-43 / Harvested from The Polish Digital Mathematics Library

We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212241
@article{bwmeta1.element.bwnjournal-article-fmv155i1p33bwm,
     author = {Tomasz Nowicki and Feliks Przytycki},
     title = {Topological invariance of the Collet--Eckmann property for S-unimodal maps},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {33-43},
     zbl = {0898.58014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p33bwm}
}
Nowicki, Tomasz; Przytycki, Feliks. Topological invariance of the Collet–Eckmann property for S-unimodal maps. Fundamenta Mathematicae, Tome 158 (1998) pp. 33-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p33bwm/

[00000] [B1] H. Bruin, Invariant measures of interval maps, PhD thesis, Tech. Univ. Delft, 1994.

[00001] [B2] H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433-452.

[00002] [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, ibid. 3 (1983), 13-46. | Zbl 0532.28014

[00003] [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30.

[00004] [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266. | Zbl 0852.46024

[00005] [GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Hölder, Invent. Math., to appear.

[00006] [JS] M. Jakobson and G. Świątek, Metric properties of non-renormalizable S-unimodal maps, II. Quasisymmetric conjugacy classes, Ergodic Theory Dynam. Systems 15 (1995), 871-938. | Zbl 0920.54037

[00007] [M] R. Ma né, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12.

[00008] [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993. | Zbl 0791.58003

[00009] [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388. | Zbl 0664.58014

[00010] [NS] T. Nowicki and D. Sands, Nonuniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., to appear. | Zbl 0908.58016

[00011] [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps, conformal and invariant measures, Trans. Amer. Math. Soc., to appear. | Zbl 0892.58063

[00012] [P2] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: International Conference on Dynamical Systems, Montevideo 1995 - a Tribute to Ricardo Ma né (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. Ser. 362, Longman, 1996, 167-181.

[00013] [P3] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317. | Zbl 0787.58037

[00014] [P4] F. Przytycki, Hölder implies CE, Astérisque, volume dedicated to A. Douady on his 60th birthday, to appear.

[00015] [PR1] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math., to appear. | Zbl 0908.58054

[00016] [PR2] F. Przytycki and S. Rohde, Rigidity of holomorphic Collet-Eckmann repellers, preprint, May 1997. | Zbl 1034.37026

[00017] [S] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal case, Ph.D. thesis, St. John's College, Cambridge, 1995.

[00018] [SN] D. Sands and T. Nowicki, Quasisymmetric conjugacies of Collet-Eckmann maps, Ergodic Theory Dynam. Systems, to appear.