We prove that if f, g are smooth unimodal maps of the interval with negative Schwarzian derivative, conjugated by a homeomorphism of the interval, and f is Collet-Eckmann, then so is g.
@article{bwmeta1.element.bwnjournal-article-fmv155i1p33bwm, author = {Tomasz Nowicki and Feliks Przytycki}, title = {Topological invariance of the Collet--Eckmann property for S-unimodal maps}, journal = {Fundamenta Mathematicae}, volume = {158}, year = {1998}, pages = {33-43}, zbl = {0898.58014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p33bwm} }
Nowicki, Tomasz; Przytycki, Feliks. Topological invariance of the Collet–Eckmann property for S-unimodal maps. Fundamenta Mathematicae, Tome 158 (1998) pp. 33-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p33bwm/
[00000] [B1] H. Bruin, Invariant measures of interval maps, PhD thesis, Tech. Univ. Delft, 1994.
[00001] [B2] H. Bruin, Topological conditions for the existence of invariant measures for unimodal maps, Ergodic Theory Dynam. Systems 14 (1994), 433-452.
[00002] [CE] P. Collet and J.-P. Eckmann, Positive Lyapunov exponents and absolute continuity for maps of the interval, ibid. 3 (1983), 13-46. | Zbl 0532.28014
[00003] [CJY] L. Carleson, P. Jones and J.-C. Yoccoz, Julia and John, Bol. Soc. Brasil. Mat. 25 (1994), 1-30.
[00004] [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266. | Zbl 0852.46024
[00005] [GS] J. Graczyk and S. Smirnov, Collet, Eckmann, & Hölder, Invent. Math., to appear.
[00006] [JS] M. Jakobson and G. Świątek, Metric properties of non-renormalizable S-unimodal maps, II. Quasisymmetric conjugacy classes, Ergodic Theory Dynam. Systems 15 (1995), 871-938. | Zbl 0920.54037
[00007] [M] R. Ma né, On a theorem of Fatou, Bol. Soc. Brasil. Mat. 24 (1993), 1-12.
[00008] [MS] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, 1993. | Zbl 0791.58003
[00009] [NP] T. Nowicki and F. Przytycki, The conjugacy of Collet-Eckmann's map of the interval with the tent map is Hölder continuous, Ergodic Theory Dynam. Systems 9 (1989), 379-388. | Zbl 0664.58014
[00010] [NS] T. Nowicki and D. Sands, Nonuniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math., to appear. | Zbl 0908.58016
[00011] [P1] F. Przytycki, Iterations of holomorphic Collet-Eckmann maps, conformal and invariant measures, Trans. Amer. Math. Soc., to appear. | Zbl 0892.58063
[00012] [P2] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holomorphic Collet-Eckmann maps, in: International Conference on Dynamical Systems, Montevideo 1995 - a Tribute to Ricardo Ma né (F. Ledrappier, J. Lewowicz and S. Newhouse, eds.), Pitman Res. Notes Math. Ser. 362, Longman, 1996, 167-181.
[00013] [P3] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317. | Zbl 0787.58037
[00014] [P4] F. Przytycki, Hölder implies CE, Astérisque, volume dedicated to A. Douady on his 60th birthday, to appear.
[00015] [PR1] F. Przytycki and S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math., to appear. | Zbl 0908.58054
[00016] [PR2] F. Przytycki and S. Rohde, Rigidity of holomorphic Collet-Eckmann repellers, preprint, May 1997. | Zbl 1034.37026
[00017] [S] D. Sands, Topological conditions for positive Lyapunov exponent in unimodal case, Ph.D. thesis, St. John's College, Cambridge, 1995.
[00018] [SN] D. Sands and T. Nowicki, Quasisymmetric conjugacies of Collet-Eckmann maps, Ergodic Theory Dynam. Systems, to appear.