Topological realization of a family of pseudoreflection groups
Notbohm, Dietrich
Fundamenta Mathematicae, Tome 158 (1998), p. 1-31 / Harvested from The Polish Digital Mathematics Library

We are interested in a topological realization of a family of pseudoreflection groups GGL(n,Fp); i.e. we are looking for topological spaces whose mod-p cohomology is isomorphic to the ring of invariants Fp[x1,...,xn]G. Spaces of this type give partial answers to a problem of Steenrod, namely which polynomial algebras over Fp can appear as the mod-p cohomology of a space. The family under consideration is given by pseudoreflection groups which are subgroups of the wreath product /qΣn where q divides p - 1 and where p is odd. Let G be such a subgroup acting on the polynomial algebra A:=Fp[x1,...,xn]. We show that there exists a space X such that H*(X;Fp)AG which is again a polynomial algebra. Examples of polynomial algebras of this form are given by the mod-p cohomology of the classifying spaces of special orthogonal groups or of symplectic groups.  The construction uses products of classifying spaces of unitary groups as building blocks which are glued together via information encoded in a full subcategory of the orbit category of the group G. Using this construction we also show that the homotopy type of the p-adic completion of these spaces is completely determined by the mod-p cohomology considered as an algebra over the Steenrod algebra. Moreover, we calculate the set of homotopy classes of self maps of the completed spaces.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:212240
@article{bwmeta1.element.bwnjournal-article-fmv155i1p1bwm,
     author = {Dietrich Notbohm},
     title = {Topological realization of a family of pseudoreflection groups},
     journal = {Fundamenta Mathematicae},
     volume = {158},
     year = {1998},
     pages = {1-31},
     zbl = {0896.55013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p1bwm}
}
Notbohm, Dietrich. Topological realization of a family of pseudoreflection groups. Fundamenta Mathematicae, Tome 158 (1998) pp. 1-31. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv155i1p1bwm/

[00000] [1] J. F. Adams and Z. Mahmud, Maps between classifying spaces, Invent. Math. 35 (1976), 1-41. | Zbl 0306.55019

[00001] [2] J. F. Adams and C. W. Wilkerson, Finite H-spaces and algebras over the Steenrod algebra, Ann. of Math. 111 (1980), 95-143. | Zbl 0404.55020

[00002] [3] J. Aguadé, Constructing modular classifying spaces, Israel J. Math. 66 (1989), 23-40. | Zbl 0697.55002

[00003] [4] J. Aguadé, C. Broto and D. Notbohm, Homotopy classification of some spaces with interesting cohomology and a conjecture of Cooke, Part I, Topology 33 (1994), 455-492. | Zbl 0843.55007

[00004] [5] A. Bousfield and D. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, 1972. | Zbl 0259.55004

[00005] [6] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer, 1985. | Zbl 0581.22009

[00006] [7] H. Cartan and S. Eilenberg, Homological Algebra, Princeton Univ. Press, 1956.

[00007] [8] A. Clark and J. Ewing, The realization of polynomial algebras as cohomology rings, Pacific J. Math. 50 (1974), 425-434. | Zbl 0333.55002

[00008] [9] W. Dwyer and D. Kan, Centric maps and realization of diagrams in the homotopy category, Proc. Amer. Math. Soc. 114 (1992), 575-584. | Zbl 0742.55004

[00009] [10] W. Dwyer, H. Miller and C. Wilkerson, Homotopical uniqueness of classifying spaces, Topology 31 (1992), 29-45. | Zbl 0748.55005

[00010] [11] W. G. Dwyer and C. W. Wilkerson, A cohomology decomposition theorem, Topology 31 (1992), 433-443. | Zbl 0756.55012

[00011] [12] W. G. Dwyer and C. W. Wilkerson, A new finite loop space at the prime two, J. Amer. Math. Soc. 6 (1993), 37-63. | Zbl 0769.55007

[00012] [13] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed point methods for Lie groups and finite loop spaces, Ann. of Math. 139 (1994), 395-442. | Zbl 0801.55007

[00013] [14] W. G. Dwyer and C. W. Wilkerson, The center of a p-compact group, in: The Čech Centennial (Boston, Mass., 1993), Contemp. Math. 181, Amer. Math. Soc., 1995, 119-157. | Zbl 0828.55009

[00014] [15] W. Dwyer and A. Zabrodsky, Maps between classifying spaces, in: Algebraic Topology (Barcelona, 1986), Lecture Notes in Math. 1298, Springer, 1987, 106-119.

[00015] [16] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Springer, 1967. | Zbl 0186.56802

[00016] [17] K. Ishiguro, Unstable Adams operations on classifying spaces, Math. Proc. Cambridge Philos. Soc. 102 (1987), 71-75.

[00017] [18] S. Jackowski and J. McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), 113-132. | Zbl 0754.55014

[00018] [19] S. Jackowski, J. McClure and B. Oliver, Homotopy classification of self-maps of BG via G-actions, Ann. of Math. 135 (1992), 183-270. | Zbl 0771.55003

[00019] [20] S. Jackowski, J. McClure and B. Oliver, Self homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147 (1995), 99-126. | Zbl 0835.55012

[00020] [21] S. Jackowski, J. McClure and B. Oliver, Homotopy of classifying spaces of compact Lie groups, in: Algebraic Topology and its Applications, Springer, 1994, 81-123. | Zbl 0796.55009

[00021] [22] S. Lang, Algebra, Addison-Wesley, 1965.

[00022] [23] J. Lannes, Sur les espaces fonctionnels dont la source est le classifiant d'un p-groupe abélien élémentaire, Publ. Math. I.H.E.S. 75 (1992), 135-244.

[00023] [24] H. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120 (1984), 39-87. | Zbl 0552.55014

[00024] [25] J. M. Møller, Rational isomorphisms of p-compact groups, Topology 35 (1996), 201-225. | Zbl 0852.55011

[00025] [26] J. M. Møller and D. Notbohm, Centers and finite coverings of finite loop spaces, J. Reine Angew. Math. 456 (1994), 99-113.

[00026] [27] J. M. Møller and D. Notbohm, Connected finite loop spaces with maximal tori, Math. Gott. Heft 14 (1994).

[00027] [28] D. Notbohm, Maps between classifying spaces, Math. Z. 207 (1991), 153-168. | Zbl 0731.55011

[00028] [29] D. Notbohm, Homotopy uniqueness of classifying spaces of compact connected Lie groups at primes dividing the order of the Weyl group, Topology 33 (1994), 271-330. | Zbl 0820.57020

[00029] [30] B. Oliver, Higher limits via Steinberg representations, Comm. Algebra 22 (1994), 1381-1393. | Zbl 0815.55003

[00030] [31] D. Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. 96 (1972), 552-586. | Zbl 0249.18022

[00031] [32] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304. | Zbl 0055.14305

[00032] [33] N. E. Steenrod, Polynomial algebras over the algebra of cohomology operations, in: H-spaces (Neuchâtel, 1970), Lecture Notes in Math. 196, Springer, 1971, 85-99.

[00033] [34] Z. Wojtkowiak, On maps from holim F to Z, in: Algebraic Topology (Barcelona, 1986), Lecture Notes in Math. 1298, Springer, 1987, 227-236.

[00034] [35] C. Xu, The existence and uniqueness of simply connected p-compact groups with Weyl groups W such that |W| is not divisible by the square of p, thesis, Purdue University, 1994.

[00035] [36] A. Zabrodsky, On the realization of invariant subgroups of π*(X), Trans. Amer. Math. Soc. 285 (1984), 467-496. | Zbl 0576.55009