In the S-category (with compact-open strong shape mappings, cf. §1, instead of continuous mappings, and arbitrary finite-dimensional separable metrizable spaces instead of finite polyhedra) there exists according to [1], [2] an S-duality. The S-dual , turns out to be of the same weak homotopy type as an appropriately defined functional dual (Corollary 4.9). Sometimes the functional object is of the same weak homotopy type as the “real” function space (§5).
@article{bwmeta1.element.bwnjournal-article-fmv154i3p261bwm, author = {Friedrich Bauer}, title = {A functional S-dual in a strong shape category}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {261-274}, zbl = {0897.55010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv154i3p261bwm} }
Bauer, Friedrich. A functional S-dual in a strong shape category. Fundamenta Mathematicae, Tome 154 (1997) pp. 261-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv154i3p261bwm/
[00000] [1] F. W. Bauer, A strong shape theory admitting an S-dual, Topology Appl. 62 (1995), 207-232. | Zbl 0852.55010
[00001] [2] F. W. Bauer, A strong shape theory with S-duality, Fund. Math. 154 (1997), 37-56. | Zbl 0883.55008
[00002] [3] F. W. Bauer, Duality in manifolds, Ann. Mat. Pura Appl. (4) 136 (1984), 241-302. | Zbl 0564.55001
[00003] [4] J. M. Cohen, Stable Homotopy, Lecture Notes in Math. 165, Springer, Heidelberg, 1970.
[00004] [5] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[00005] [6] B. Günther, The use of semisimplicial complexes in strong shape theory, Glas. Mat. 27 (47) (1992), 101-144. | Zbl 0781.55006
[00006] [7] E. Spanier, Function spaces and duality, Ann. of Math. 70 (1959), 338-378. | Zbl 0090.12905
[00007] [8] H. Thiemann, Strong shape and fibrations, Glas. Mat. 30 (50) (1995), 135-174. | Zbl 0870.55007