It is consistent that there exists a graph X of cardinality such that every graph has an edge coloring with colors in which the induced copies of X (if there are any) are totally multicolored (get all possible colors).
@article{bwmeta1.element.bwnjournal-article-fmv154i2p203bwm, author = {P\'eter Komj\'ath}, title = {A strongly non-Ramsey uncountable graph}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {203-205}, zbl = {0883.03037}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv154i2p203bwm} }
Komjáth, Péter. A strongly non-Ramsey uncountable graph. Fundamenta Mathematicae, Tome 154 (1997) pp. 203-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv154i2p203bwm/
[00000] [1] P. Erdős, A. Hajnal, A. Máté and R. Rado, Combinatorial Set Theory: Partition Relation for Cardinals, North-Holland, 1984. | Zbl 0573.03019
[00001] [2] A. Hajnal and P. Komjáth, Embedding graphs into colored graphs, Trans. Amer. Math. Soc. 307 (1988), 395-409; corrigendum: 332 (1992), 475. | Zbl 0659.03029
[00002] [3] S. Shelah, Consistency of positive partition theorems for graphs and models, in: Set Theory and Applications, J. Steprāns and S. Watson (eds.), Lecture Notes in Math. 1401, Springer, 1989, 167-193.
[00003] [4] S. Todorčević, Coloring pairs of countable ordinals, Acta Math. 159 (1987), 261-294. | Zbl 0658.03028