We prove: Theorem 1. Let κ be an uncountable cardinal. Every κ-Suslin graph G on reals satisfies one of the following two requirements: (I) G admits a κ-Borel colouring by ordinals below κ; (II) there exists a continuous homomorphism (in some cases an embedding) of a certain locally countable Borel graph into G. Theorem 2. In the Solovay model, every OD graph G on reals satisfies one of the following two requirements: (I) G admits an OD colouring by countable ordinals; (II) as above.
@article{bwmeta1.element.bwnjournal-article-fmv154i2p183bwm, author = {Vladimir Kanovei}, title = {Two dichotomy theorems on colourability of non-analytic graphs}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {183-201}, zbl = {0883.03035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv154i2p183bwm} }
Kanovei, Vladimir. Two dichotomy theorems on colourability of non-analytic graphs. Fundamenta Mathematicae, Tome 154 (1997) pp. 183-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv154i2p183bwm/
[00000] [1] D. Guaspari, Trees, norms, and scales, in: London Math. Soc. Lecture Note Ser. 87, Cambridge Univ. Press, 1983, 135-161. | Zbl 0549.03040
[00001] [2] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. | Zbl 0778.28011
[00002] [3] L. A. Harrington and S. Shelah, Counting equivalence classes for co-κ-Souslin equivalence relations, in: D. van Dalen et al. (eds.), Logic Colloquium '80 (Prague, 1980), North-Holland, 1982, 147-152.
[00003] [4] G. Hjorth, Thin equivalence relations and effective decompositions, J. Symbolic Logic 58 (1993), 1153-1164. | Zbl 0793.03051
[00004] [5] G. Hjorth, A remark on equivalence relations, handwritten note.
[00005] [6] V. Kanovei, An Ulm-type classification theorem for equivalence relations in Solovay model, J. Symbolic Logic, to appear. | Zbl 0895.03020
[00006] [7] V. Kanovei, On a dichotomy related to colourings of definable graphs in generic models, preprint ML-96-10, University of Amsterdam, 1996.
[00007] [8] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.
[00008] [9] A. S. Kechris, S. Solecki and S. Todorčević, Borel chromatic numbers, Adv. Math., to appear. | Zbl 0100.24105
[00009] [10] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1-56. | Zbl 0207.00905