We present a reformulation of the fine structure theory from Jensen [72] based on his Σ* theory for K and introduce the Fine Structure Principle, which captures its essential content. We use this theory to prove the Square and Fine Scale Principles, and to construct Morasses.
@article{bwmeta1.element.bwnjournal-article-fmv154i2p133bwm, author = {Sy Friedman}, title = {The $\Sigma$* approach to the fine structure of L}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {133-158}, zbl = {0887.03039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv154i2p133bwm} }
Friedman, Sy. The Σ* approach to the fine structure of L. Fundamenta Mathematicae, Tome 154 (1997) pp. 133-158. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv154i2p133bwm/
[00000] A. Beller, R. B. Jensen and P. Welch [82], Coding the Universe, London Math. Soc. Lecture Note Ser. 47, Cambridge Univ. Press, 1982.
[00001] K. Devlin [84], Constructibility, Springer, 1984.
[00002] H.-D. Donder [85], Another look at gap-1 morasses, in: Recursion Theory, Proc. Sympos. Pure Math. 42, Amer. Math. Soc., 223-236.
[00003] H.-D. Donder, R. B. Jensen and L. J. Stanley [85], Condensation-coherent global square systems, in: Recursion Theory, Proc. Sympos. Pure Math. 42, Amer. Math. Soc., 237-258.
[00004] S.D. Friedman [87], Strong coding, Ann. Pure Appl. Logic 35, 1-98.
[00005] S.D. Friedman [94], A simpler proof of Jensen's coding theorem, Ann. Pure Appl. 70, 1-16. | Zbl 0809.03040
[00006] R.B. Jensen [72], The fine structure of the constructible hierarchy, Ann. Math. Logic 4, 229-308. | Zbl 0257.02035
[00007] R.B. Jensen [?], Nonoverlapping extenders, unpublished.