Non-Glimm–Effros equivalence relations at second projective level
Kanovei, Vladimir
Fundamenta Mathematicae, Tome 154 (1997), p. 1-35 / Harvested from The Polish Digital Mathematics Library

A model is presented in which the Σ21 equivalence relation xCy iff L[x]=L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm-Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an “ill“founded “length” of the iteration. In another model of this type, we get an example of a Π21 non-Glimm-Effros equivalence relation on reals. As a more elementary application of the technique of “ill“founded Sacks iterations, we obtain a model in which every nonconstructible real codes a collapse of a given cardinal κ2old to 1old.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212225
@article{bwmeta1.element.bwnjournal-article-fmv154i1p1bwm,
     author = {Vladimir Kanovei},
     title = {Non-Glimm--Effros equivalence relations at second projective level},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {1-35},
     zbl = {0883.03034},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv154i1p1bwm}
}
Kanovei, Vladimir. Non-Glimm–Effros equivalence relations at second projective level. Fundamenta Mathematicae, Tome 154 (1997) pp. 1-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv154i1p1bwm/

[00000] [1] J. E. Baumgartner and R. Laver, Iterated perfect set forcing, Ann. Math. Logic 17 (1979), 271-288. | Zbl 0427.03043

[00001] [2] S. D. Friedman and B. Velickovic, Nonstandard models and analytic equivalence relations, Proc. Amer. Math. Soc., to appear. | Zbl 0864.03033

[00002] [3] M. Groszek, ω1* as an initial segment of the c-degrees, J. Symbolic Logic 59 (1994), 956-976. | Zbl 0810.03043

[00003] [4] M. Groszek and T. Jech, Generalized iteration of forcing, Trans. Amer. Math. Soc. 324 (1991), 1-26. | Zbl 0721.03033

[00004] [5] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. | Zbl 0778.28011

[00005] [6] G. Hjorth, Thin equivalence relations and effective decompositions, J. Symbolic Logic 58 (1993), 1153-1164. | Zbl 0793.03051

[00006] [7] G. Hjorth, A dichotomy for the definable universe, J. Symbolic Logic 60 (1995), 1199-1207. | Zbl 0844.03029

[00007] [8] G. Hjorth, A remark on 11 equivalence relations, note, 1994.

[00008] [9] G. Hjorth and A. S. Kechris, Analytic equivalence relations and Ulm-type classifications, J. Symbolic Logic 60 (1995), 1273-1300. | Zbl 0847.03023

[00009] [10] V. Kanovei, The cardinality of the set of Vitali equivalence classes, Math. Notes 49 (1991), 370-374. | Zbl 0742.03016

[00010] [11] V. Kanovei, An Ulm-type classification theorem for equivalence relations in Solovay model, J. Symbolic Logic 62 (1997), to appear. | Zbl 0895.03020

[00011] [12] V. Kanovei, Ulm classification of analytic equivalence relations in generic universes, Math. Logic Quart. 44 (1998), to appear. | Zbl 0921.03048

[00012] [13] A. S. Kechris, Topology and descriptive set theory, Topology Appl. 58 (1994), 195-222. | Zbl 0805.54035

[00013] [14] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.

[00014] [15] N. Lusin, Sur les ensembles analytiques, Fund. Math. 10 (1927), 1-95.

[00015] [16] W. Sierpiński, L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse, Bull. Internat. Acad. Sci. Lettres Sér. A Sci. Math. 1918, 97-152.

[00016] [17] J. Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Ann. Math. Logic 18 (1980), 1-28. | Zbl 0517.03018