We prove that Alexander-Spanier cohomology with coefficients in a topologicalAbelian group G is isomorphic to the group of isomorphism classes of principal bundles with certain Abelian structure groups. The result holds if either X is a CW-space and G arbitrary or if X is metrizable or compact Hausdorff and G an ANR.
@article{bwmeta1.element.bwnjournal-article-fmv153i2p154bwm, author = {Bernd G\"unther and L. Mdzinarishvili}, title = {Continuous Alexander--Spanier cohomology classifies principal bundles with Abelian structure group}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {154-156}, zbl = {0891.55004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i2p154bwm} }
Günther, Bernd; Mdzinarishvili, L. Continuous Alexander–Spanier cohomology classifies principal bundles with Abelian structure group. Fundamenta Mathematicae, Tome 154 (1997) pp. 154-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i2p154bwm/
[00000] [1] A. Dold und R. Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (1958), 239-281.
[00001] [2] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. Math. Grenzgeb. 35, Springer, 1967. | Zbl 0186.56802
[00002] [3] K. Lamotke, Semisimpliziale algebraische Topologie, Grundlehren Math. Wiss. 147, Springer, 1968.
[00003] [4] J. D. Lawson, Comparison of taut cohomologies, Aequationes Math. 9 (1973), 201-209. | Zbl 0272.55015
[00004] [5] J. P. May, Simplicial Objects in Algebraic Topology, University of Chicago Press, Midway Reprint, 1982.
[00005] [6] L. Mdzinarishvili, Partially continuous Alexander-Spanier cohomology theory, Grüne Preprintreihe der Universität Heidelberg, Heft 130, 1996.
[00006] [7] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), 163-171. | Zbl 0055.16203