We construct two examples of infinite spaces X such that there is no continuous linear surjection from the space of continuous functions onto × ℝcp(X)cp(X). One of these examples is compact. This answers some questions of Arkhangel’skiĭ.
@article{bwmeta1.element.bwnjournal-article-fmv153i2p125bwm, author = {Witold Marciszewski}, title = {A function space Cp(X) not linearly homeomorphic to Cp(X) $\times$ $\mathbb{R}$}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {125-40}, zbl = {0904.46017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i2p125bwm} }
Marciszewski, Witold. A function space Cp(X) not linearly homeomorphic to Cp(X) × ℝ. Fundamenta Mathematicae, Tome 154 (1997) pp. 125-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i2p125bwm/
[00000] [Ar1] A. V. Arkhangel'skiĭ, Linear homeomorphisms of function spaces, Soviet Math. Dokl. 25 (3) (1982), 852-855.
[00001] [Ar2] A. V. Arkhangel’skiĭ, A survey of -theory, Questions Answers Gen. Topology 5 (1987), 1-109.
[00002] [Ar3] A. V. Arkhangel’skiĭ, Problems in -Theory, in: Open Problems in Topology, North-Holland, 1990, 601-615.
[00003] [Ar4] A. V. Arkhangel’skiĭ, -theory, in: Recent Progress in General Topology, North-Holland, 1992, 1-56.
[00004] [BdG] J. Baars and J. de Groot, On Topological and Linear Equivalence of Certain Function Spaces, CWI Tract 86, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 1992.
[00005] [Ber] Yu. F. Bereznitskiĭ, Nonhomeomorphism between two bicompacta, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 26 (6) (1971), 8-10 (in Russian).
[00006] [Be] C. Bessaga, A Lipschitz invariant of normed linear spaces related to the entropy numbers, Rocky Mountain J. Math. 10 (1980), 81-84. | Zbl 0432.46020
[00007] [BPR] C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677-683. | Zbl 0109.33502
[00008] [Du] E. Dubinsky, Every separable Fréchet space contains a non-stable dense subspace, Studia Math. 40 (1971), 77-79. | Zbl 0219.46017
[00009] [Go] W. T. Gowers, A solution to Banach's hyperplane problem, Bull. London Math. Soc. 26 (1994), 523-530. | Zbl 0838.46011
[00010] [GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008
[00011] [Gu] S. P. Gul'ko, Spaces of continuous functions on ordinals and ultrafilters, Mat. Zametki 47 (4) (1990), 26-34 (in Russian).
[00012] [Kun] K. Kunen, Weak P-points in N*, in: Colloq. Math. Soc. János Bolyai 23, North-Holland, 1978, 741-749.
[00013] [Ku] K. Kuratowski, Sur la puissance de l'ensemble des "nombres de dimension" au sens de M. Fréchet, Fund. Math. 8 (1926), 201-208. | Zbl 52.0588.01
[00014] [KS] K. Kuratowski et W. Sierpiński, Sur un problème de M. Fréchet concernant les dimensions des ensembles linéaires, Fund. Math. 8 (1926), 193-200.
[00015] [Ma1] W. Marciszewski, A pre-Hilbert space without any continuous map onto its own square, Bull. Polish Acad. Sci. Math. 31 (1983), 393-397.
[00016] [Ma2] W. Marciszewski, A function space C(K) not weakly homeomorphic to C(K) × C(K), Studia Math. 88 (1988), 129-137. | Zbl 0666.46022
[00017] [Ma3] W. Marciszewski, On van Mill’s example of a normed X with , preprint.
[00018] [vM1] J. van Mill, An introduction to ℝ, in: Handbook of Set-Theoretic Topology, North-Holland, 1984, 503-567.
[00019] [vM2] J. van Mill, Domain invariance in infinite-dimensional linear spaces, Proc. Amer. Math. Soc. 101 (1987), 173-180. | Zbl 0627.57016
[00020] [Po1] R. Pol, An infinite-dimensional pre-Hilbert space not homeomorphic to its own square, Proc. Amer. Math. Soc. 90 (1984), 450-454. | Zbl 0528.54032
[00021] [Po2] R. Pol, On metrizable E with , Mathematika 42 (1995), 49-55.
[00022] [Ro] S. Rolewicz, An example of a normed space non-isomorphic to its product by the real line, Studia Math. 40 (1971), 71-75. | Zbl 0219.46016