Thick subcategories of the stable module category
Benson, D. ; Carlson, Jon ; Rickard, Jeremy
Fundamenta Mathematicae, Tome 154 (1997), p. 59-80 / Harvested from The Polish Digital Mathematics Library

We study the thick subcategories of the stable category of finitely generated modules for the principal block of the group algebra of a finite group G over a field of characteristic p. In case G is a p-group we obtain a complete classification of the thick subcategories. The same classification works whenever the nucleus of the cohomology variety is zero. In case the nucleus is nonzero, we describe some examples which lead us to believe that there are always infinitely many thick subcategories concentrated on each nonzero closed homogeneous subvariety of the nucleus.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212215
@article{bwmeta1.element.bwnjournal-article-fmv153i1p59bwm,
     author = {D. Benson and Jon Carlson and Jeremy Rickard},
     title = {Thick subcategories of the stable module category},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {59-80},
     zbl = {0886.20007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p59bwm}
}
Benson, D.; Carlson, Jon; Rickard, Jeremy. Thick subcategories of the stable module category. Fundamenta Mathematicae, Tome 154 (1997) pp. 59-80. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p59bwm/

[00000] [1] D. J. Benson, Representations and Cohomology I, Cambridge Stud. Adv. Math. 30, Cambridge Univ. Press, 1990.

[00001] [2] D. J. Benson, Representations and Cohomology II, Cambridge Stud. Adv. Math. 31, Cambridge Univ. Press, 1991.

[00002] [3] D. J. Benson, Cohomology of modules in the principal block of a finite group, New York J. Math. 1 (1995), 196-205. | Zbl 0879.20004

[00003] [4] D. J. Benson, J. F. Carlson and J. Rickard, Complexity and varieties for infinitely generated modules, Math. Proc. Cambridge Philos. Soc. 118 (1995), 223-243. | Zbl 0848.20003

[00004] [5] D. J. Benson, J. F. Carlson and J. Rickard, Complexity and varieties for infinitely generated modules, II, Math. Proc. Cambridge Philos. Soc. to appear. | Zbl 0888.20003

[00005] [6] D. J. Benson, J. F. Carlson and G. R. Robinson, On the vanishing of group cohomology, J. Algebra 131 (1990), 40-73. | Zbl 0697.20043

[00006] [7] L. Chouinard, Projectivity and relative projectivity over group rings, J. Pure Appl. Algebra 7 (1976), 278-302. | Zbl 0327.20020

[00007] [8] E. S. Devinatz, M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory, I, Ann. of Math. (2) 128 (1988), 207-241. | Zbl 0673.55008

[00008] [9] K. Erdmann, Algebras and semidihedral defect groups I, Proc. London Math. Soc. 57 (1988), 109-150. | Zbl 0648.20007

[00009] [10] K. Erdmann, Algebras and semidihedral defect groups II, Proc. London Math. Soc. 60 (1990), 123-165. | Zbl 0687.20006

[00010] [11] M. J. Hopkins, Global methods in homotopy theory, in: Homotopy Theory (Durham, 1985), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press, 1987, 73-96.

[00011] [12] A. Neeman, Stable homotopy as a triangulated functor, Invent. Math. 109 (1992), 17-40. | Zbl 0793.55007

[00012] [13] A. Neeman, The chromatic tower for D(R), Topology 31 (1992), 519-532. | Zbl 0793.18008

[00013] [14] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), 436-456. | Zbl 0642.16034

[00014] [15] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303-317. | Zbl 0685.16016

[00015] [16] J. Rickard, Derived equivalences as derived functors, J. London Math. Soc. (2) 43 (1991), 37-48. | Zbl 0683.16030

[00016] [17] J. Rickard, Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3) 72 (1996), 331-358. | Zbl 0862.20010

[00017] [18] J. Rickard, Idempotent modules in the stable category, J. London Math. Soc., to appear. | Zbl 0910.20034

[00018] [19] G. Schneider, Die 2-modularen Darstellungen der Mathieu-Gruppe M12, doctoral dissertation, Essen, 1981.