Players ONE and TWO play the following game: In the nth inning ONE chooses a set from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset of X. The players must obey the rule that for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a -set. To what extent is the converse true? We show that: (A) For ℱ the collection of countable subsets of X: 1. There are subsets of the real line for which neither player has a winning strategy in this game. 2. The statement “If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a -set” is independent of the axioms of classical mathematics. 3. There are spaces whose countable subsets are -sets, and yet ONE has a winning strategy in this game. 4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable. (B) For ℱ the collection of -subsets of a subset X of the real line the determinacy of this game is independent of ZFC.
@article{bwmeta1.element.bwnjournal-article-fmv153i1p41bwm, author = {Winfried Just and Marion Scheepers and Juris Steprans and Paul Szeptycki}, title = {G$\delta$ -sets in topological spaces and games}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {41-58}, zbl = {0880.90158}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p41bwm} }
Just, Winfried; Scheepers, Marion; Steprans, Juris; Szeptycki, Paul. Gδ -sets in topological spaces and games. Fundamenta Mathematicae, Tome 154 (1997) pp. 41-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p41bwm/
[00000] [1] Z. Balogh, There is a Q-set space in ZFC, Proc. Amer. Math. Soc. 113 (1991), 557-561. | Zbl 0748.54012
[00001] [2] T. Bartoszyński and M. Scheepers, A-sets, Real Anal. Exchange 19 (1993-94), 521-528.
[00002] [3] A. S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1934), 289-300. | Zbl 0009.10504
[00003] [4] E. Čech, Sur la dimension des espaces parfaitement normaux, Bull. Internat. Acad. Bohême (Prague) 33 (1932), 38-55.
[00004] [5] H F. Hausdorff, Dimension und äusseres Mass, Math. Ann. 79 (1919), 157-179. | Zbl 46.0292.01
[00005] [6] W. Just, A. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. | Zbl 0870.03021
[00006] [7] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1984. | Zbl 0443.03021
[00007] [8] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.
[00008] [9] K. Kuratowski, Sur une famille d'ensembles singuliers, Fund. Math. 21 (1933), 127-128. | Zbl 0008.24801
[00009] [10] N. Lusin, Sur l'existence d'un ensemble non dénombrable qui est de première catégorie dans tout ensemble parfait, Fund. Math. 2 (1921), 155-157. | Zbl 48.0275.05
[00010] [11] N. Lusin, Sur les ensembles toujours de première catégorie, Fund. Math. 21 (1933), 114-126. | Zbl 0008.24704
[00011] [12] A. W. Miller, On generating the category algebra and the Baire order problem, Bull. Acad. Polon. Sci. 27 (1979), 751-755. | Zbl 0461.54032
[00012] [13] A. W. Miller, Special subsets of the real line, in: The Handbook of Set-Theoretic Topology, North-Holland, 1984, 201-223.
[00013] [14] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55. | Zbl 64.0622.01
[00014] [15] F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46. | Zbl 0032.33702
[00015] [16] W. Sierpiński, Sur l’hypothese du continu , Fund. Math. 5 (1924), 177-187.
[00016] [17] W. Sierpiński, Sur deux consequences d'un théorème de Hausdorff, Fund. Math. 26 (1945), 269-272. | Zbl 0060.12715
[00017] [18] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, 2nd ed., Springer, 1978. | Zbl 0386.54001
[00018] [19] J. Steprāns, Combinatorial consequences of adding Cohen reals, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 583-617. | Zbl 0839.03037
[00019] [20] E. Szpilrajn, Sur un problème de M. Banach, Fund. Math. 15 (1930), 212-214.
[00020] [21] E. Szpilrajn, Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1934), 17-34. | Zbl 61.0229.01