Gδ -sets in topological spaces and games
Just, Winfried ; Scheepers, Marion ; Steprans, Juris ; Szeptycki, Paul
Fundamenta Mathematicae, Tome 154 (1997), p. 41-58 / Harvested from The Polish Digital Mathematics Library

Players ONE and TWO play the following game: In the nth inning ONE chooses a set On from a prescribed family ℱ of subsets of a space X; TWO responds by choosing an open subset Tn of X. The players must obey the rule that OnOn+1Tn+1Tn for each n. TWO wins if the intersection of TWO’s sets is equal to the union of ONE’s sets. If ONE has no winning strategy, then each element of ℱ is a Gδ-set. To what extent is the converse true? We show that:  (A) For ℱ the collection of countable subsets of X:   1. There are subsets of the real line for which neither player has a winning strategy in this game.   2. The statement “If X is a set of real numbers, then ONE does not have a winning strategy if, and only if, every countable subset of X is a Gδ-set” is independent of the axioms of classical mathematics.   3. There are spaces whose countable subsets are Gδ-sets, and yet ONE has a winning strategy in this game.   4. For a hereditarily Lindelöf space X, TWO has a winning strategy if, and only if, X is countable.  (B) For ℱ the collection of Gσ-subsets of a subset X of the real line the determinacy of this game is independent of ZFC.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212214
@article{bwmeta1.element.bwnjournal-article-fmv153i1p41bwm,
     author = {Winfried Just and Marion Scheepers and Juris Steprans and Paul Szeptycki},
     title = {G$\delta$ -sets in topological spaces and games},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {41-58},
     zbl = {0880.90158},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p41bwm}
}
Just, Winfried; Scheepers, Marion; Steprans, Juris; Szeptycki, Paul. Gδ -sets in topological spaces and games. Fundamenta Mathematicae, Tome 154 (1997) pp. 41-58. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p41bwm/

[00000] [1] Z. Balogh, There is a Q-set space in ZFC, Proc. Amer. Math. Soc. 113 (1991), 557-561. | Zbl 0748.54012

[00001] [2] T. Bartoszyński and M. Scheepers, A-sets, Real Anal. Exchange 19 (1993-94), 521-528.

[00002] [3] A. S. Besicovitch, Concentrated and rarified sets of points, Acta Math. 62 (1934), 289-300. | Zbl 0009.10504

[00003] [4] E. Čech, Sur la dimension des espaces parfaitement normaux, Bull. Internat. Acad. Bohême (Prague) 33 (1932), 38-55.

[00004] [5] H F. Hausdorff, Dimension und äusseres Mass, Math. Ann. 79 (1919), 157-179. | Zbl 46.0292.01

[00005] [6] W. Just, A. Miller, M. Scheepers and P. J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996), 241-266. | Zbl 0870.03021

[00006] [7] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, 1984. | Zbl 0443.03021

[00007] [8] K. Kuratowski, Topology, Vol. 1, Academic Press, 1966.

[00008] [9] K. Kuratowski, Sur une famille d'ensembles singuliers, Fund. Math. 21 (1933), 127-128. | Zbl 0008.24801

[00009] [10] N. Lusin, Sur l'existence d'un ensemble non dénombrable qui est de première catégorie dans tout ensemble parfait, Fund. Math. 2 (1921), 155-157. | Zbl 48.0275.05

[00010] [11] N. Lusin, Sur les ensembles toujours de première catégorie, Fund. Math. 21 (1933), 114-126. | Zbl 0008.24704

[00011] [12] A. W. Miller, On generating the category algebra and the Baire order problem, Bull. Acad. Polon. Sci. 27 (1979), 751-755. | Zbl 0461.54032

[00012] [13] A. W. Miller, Special subsets of the real line, in: The Handbook of Set-Theoretic Topology, North-Holland, 1984, 201-223.

[00013] [14] F. Rothberger, Eine Verschärfung der Eigenschaft C, Fund. Math. 30 (1938), 50-55. | Zbl 64.0622.01

[00014] [15] F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46. | Zbl 0032.33702

[00015] [16] W. Sierpiński, Sur l’hypothese du continu (20=1), Fund. Math. 5 (1924), 177-187.

[00016] [17] W. Sierpiński, Sur deux consequences d'un théorème de Hausdorff, Fund. Math. 26 (1945), 269-272. | Zbl 0060.12715

[00017] [18] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, 2nd ed., Springer, 1978. | Zbl 0386.54001

[00018] [19] J. Steprāns, Combinatorial consequences of adding Cohen reals, in: Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan, 1993, 583-617. | Zbl 0839.03037

[00019] [20] E. Szpilrajn, Sur un problème de M. Banach, Fund. Math. 15 (1930), 212-214.

[00020] [21] E. Szpilrajn, Sur une classe de fonctions de M. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1934), 17-34. | Zbl 61.0229.01