We investigate the problem if every compact space K carrying a Radon measure of Maharam type κ can be continuously mapped onto the Tikhonov cube (κ being an uncountable cardinal). We show that for κ ≥ cf(κ) ≥ κ this holds if and only if κ is a precaliber of measure algebras. Assuming that there is a family of null sets in such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is “no” for κ = ω. We also give alternative proofs of two related results due to Kunen and van Mill [18].
@article{bwmeta1.element.bwnjournal-article-fmv153i1p25bwm, author = {Grzegorz Plebanek}, title = {Nonseparable Radon measures and small compact spaces}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {25-40}, zbl = {0905.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p25bwm} }
Plebanek, Grzegorz. Nonseparable Radon measures and small compact spaces. Fundamenta Mathematicae, Tome 154 (1997) pp. 25-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p25bwm/
[00000] [1] S. Argyros, S. Mercourakis and S. Negrepontis, Functional-analytic properties of Corson-compact spaces, Studia Math. 89 (1988), 197-229. | Zbl 0656.46014
[00001] [2] T. Bartoszyński and H. Judah, Set Theory: on the structure of the real line, A. K. Peters, 1995. | Zbl 0834.04001
[00002] [3] T. Bartoszyński and S. Shelah, Closed measure zero sets, Ann. Pure Appl. Logic 58 (1992), 93-110. | Zbl 0764.03018
[00003] [4] J. Brendle, H. Judah and S. Shelah, Combinatorial properties of Hechler forcing, Ann. Pure Appl. Logic 58 (1992), 185-199. | Zbl 0790.03054
[00004] [5] J. Cichoń, A. Kamburelis and J. Pawlikowski, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142-146. | Zbl 0593.28003
[00005] [6] J. Cichoń, A. Szymański and B. Węglorz, On intersections of sets of positive Lebesgue measure, Colloq. Math. 52 (1987), 173-177. | Zbl 0627.28005
[00006] [7] W. W. Comfort and S. Negrepontis, Chain Conditions in Topology, Cambridge Univ. Press, 1982.
[00007] [8] R. G. Douglas, On extremal measures and subspace density, Michigan Math. J. 11 (1964), 243-246. | Zbl 0121.33102
[00008] [9] M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54. | Zbl 0805.28008
[00009] [10] M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277. | Zbl 1068.28502
[00010] [11] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, Cambridge, 1984. | Zbl 0551.03033
[00011] [12] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, J. D. Monk (ed.), North-Holland, 1989, Vol. 3, Chap. 22, 877-980.
[00012] [13] D. H. Fremlin, Real-valued measurable cardinals, in: Israel Math. Conf. Proc. 6, 1993, 961-1044. | Zbl 0839.03038
[00013] [14] R. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977) 313-324. | Zbl 0365.46020
[00014] [15] R. Haydon, On dual -spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978) 142-152. | Zbl 0407.46018
[00015] [16] K. Kunen, Set Theory, Stud. Logic 102, North-Holland, 1980.
[00016] [17] K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
[00017] [18] K. Kunen and J. van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), 61-72. | Zbl 0834.54014
[00018] [19] G. Plebanek, Compact spaces that result from adequate families of sets, Topology Appl. 65 (1995), 257-270. | Zbl 0869.54003
[00019] [20] G. Plebanek, On Radon measures on first-countable spaces, Fund. Math. 148 (1995), 159-164. | Zbl 0853.28005
[00020] [21] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
[00021] [22] B. E. Shapirovskiĭ, Special types of embeddings in Tychonoff cubes. Subspaces of Σ-products and cardinal invariants, in: Á. Császár (ed.), Topology, Vol. II, North-Holand, Amsterdam, 1980, 1055-1086. | Zbl 0437.54008
[00022] [23] J. E. Vaughan, Small uncountable cardinals and topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, Chapter 11, 195-216.