We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.
@article{bwmeta1.element.bwnjournal-article-fmv153i1p1bwm, author = {Daciberg Gon\c calves and Jerzy Jezierski}, title = {Lefschetz coincidence formula on non-orientable manifolds}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {1-23}, zbl = {0884.55001}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p1bwm} }
Gonçalves, Daciberg; Jezierski, Jerzy. Lefschetz coincidence formula on non-orientable manifolds. Fundamenta Mathematicae, Tome 154 (1997) pp. 1-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p1bwm/
[00000] [Bd] G. Bredon, Geometry and Topology, Grad. Texts in Math. 139, Springer, New York, 1993.
[00001] [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971. | Zbl 0216.19601
[00002] [BS] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79. | Zbl 0757.55002
[00003] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85. | Zbl 0787.55003
[00004] [FH] E. Fadell and S. Husseini, Fixed point theory for non-simply connected manifolds, Topology 30 (1981), 53-92. | Zbl 0453.55002
[00005] [G1] D. L. Gonçalves, Indices for coincidence classes and the Lefschetz formula for non-orientable manifolds, preprint, Mathematisches Institut, Universität Heidelberg.
[00006] [G2] D. L. Gonçalves, Coincidence theory for maps from a complex into a manifold, preprint.
[00007] [GO] D. L. Gonçalves and E. Oliveira, The Lefschetz coincidence numbers for maps on compact surfaces, preprint, Department of Mathematics, UFSCAR, S ao Carlos.
[00008] [Je] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178. | Zbl 0789.55002
[00009] [Ji] B. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.
[00010] [M] K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39. | Zbl 0757.55003
[00011] [O] P. Olum, Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50. | Zbl 0038.36601
[00012] [Sp1] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[00013] [Sp2] E. Spanier, Duality in topological manifolds, in: Colloque de Topologie Tenu à Bruxelles, Centre Belge de Recherches Mathématiques, 1966, 91-111.
[00014] [V] J. Vick, Homology Theory, Academic Press, New York, 1973.
[00015] [W1] C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276. | Zbl 0149.20602
[00016] [W2] C. T. C. Wall, On Poincaré complex I, Ann. of Math. 86 (1967), 213-245.
[00017] [Wh] G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.