Lefschetz coincidence formula on non-orientable manifolds
Gonçalves, Daciberg ; Jezierski, Jerzy
Fundamenta Mathematicae, Tome 154 (1997), p. 1-23 / Harvested from The Polish Digital Mathematics Library

We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212212
@article{bwmeta1.element.bwnjournal-article-fmv153i1p1bwm,
     author = {Daciberg Gon\c calves and Jerzy Jezierski},
     title = {Lefschetz coincidence formula on non-orientable manifolds},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {1-23},
     zbl = {0884.55001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p1bwm}
}
Gonçalves, Daciberg; Jezierski, Jerzy. Lefschetz coincidence formula on non-orientable manifolds. Fundamenta Mathematicae, Tome 154 (1997) pp. 1-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv153i1p1bwm/

[00000] [Bd] G. Bredon, Geometry and Topology, Grad. Texts in Math. 139, Springer, New York, 1993.

[00001] [B] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., New York, 1971. | Zbl 0216.19601

[00002] [BS] R. F. Brown and H. Schirmer, Nielsen coincidence theory and coincidence producing maps for manifolds with boundary, Topology Appl. 46 (1992), 65-79. | Zbl 0757.55002

[00003] [DJ] R. Dobreńko and J. Jezierski, The coincidence Nielsen theory on non-orientable manifolds, Rocky Mountain J. Math. 23 (1993), 67-85. | Zbl 0787.55003

[00004] [FH] E. Fadell and S. Husseini, Fixed point theory for non-simply connected manifolds, Topology 30 (1981), 53-92. | Zbl 0453.55002

[00005] [G1] D. L. Gonçalves, Indices for coincidence classes and the Lefschetz formula for non-orientable manifolds, preprint, Mathematisches Institut, Universität Heidelberg.

[00006] [G2] D. L. Gonçalves, Coincidence theory for maps from a complex into a manifold, preprint.

[00007] [GO] D. L. Gonçalves and E. Oliveira, The Lefschetz coincidence numbers for maps on compact surfaces, preprint, Department of Mathematics, UFSCAR, S ao Carlos.

[00008] [Je] J. Jezierski, The Nielsen coincidence theory on topological manifolds, Fund. Math. 143 (1993), 167-178. | Zbl 0789.55002

[00009] [Ji] B. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math. 14, Amer. Math. Soc., Providence, 1983.

[00010] [M] K. Mukherjea, Coincidence theory for manifolds with boundary, Topology Appl. 46 (1992), 23-39. | Zbl 0757.55003

[00011] [O] P. Olum, Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50. | Zbl 0038.36601

[00012] [Sp1] E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.

[00013] [Sp2] E. Spanier, Duality in topological manifolds, in: Colloque de Topologie Tenu à Bruxelles, Centre Belge de Recherches Mathématiques, 1966, 91-111.

[00014] [V] J. Vick, Homology Theory, Academic Press, New York, 1973.

[00015] [W1] C. T. C. Wall, Surgery of non-simply-connected manifolds, Ann. of Math. 84 (1966), 217-276. | Zbl 0149.20602

[00016] [W2] C. T. C. Wall, On Poincaré complex I, Ann. of Math. 86 (1967), 213-245.

[00017] [Wh] G. W. Whitehead, Elements of Homotopy Theory, Springer, New York, 1978.