As is well known, a horseshoe map, i.e. a special injective reimbedding of the unit square in (or more generally, of the cube in ) as considered first by S. Smale [5], defines a shift dynamics on the maximal invariant subset of (or ). It is shown that this remains true almost surely for noninjective maps provided the contraction rate of the mapping in the stable direction is sufficiently strong, and bounds for this rate are given.
@article{bwmeta1.element.bwnjournal-article-fmv152i3p267bwm, author = {H. Bothe}, title = {Shift spaces and attractors in noninvertible horseshoes}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {267-289}, zbl = {0884.58063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i3p267bwm} }
Bothe, H. Shift spaces and attractors in noninvertible horseshoes. Fundamenta Mathematicae, Tome 154 (1997) pp. 267-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i3p267bwm/
[00000] [1] H. G. Bothe, Attractors of noninvertible maps, Preprint 77, IAAS, 1993.
[00001] [2] K. Falconer, Fractal Geometry, Wiley, 1990.
[00002] [3] J. Moser, Stable and Random Motions in Dynamical Systems, Ann. of Math. Stud. 77, Princeton Univ. Press, 1973. | Zbl 0271.70009
[00003] [4] F. Przytycki, On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977), 61-77.
[00004] [5] S. Smale, Diffeomorphisms with many periodic points, in: Differential and Combinatorial Topology, S. S. Cairns (ed.), Princeton Univ. Press, 1963, 63-80.
[00005] [6] C. Tricot, Jr., Two definitions of fractal dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. | Zbl 0483.28010