Shift spaces and attractors in noninvertible horseshoes
Bothe, H.
Fundamenta Mathematicae, Tome 154 (1997), p. 267-289 / Harvested from The Polish Digital Mathematics Library

As is well known, a horseshoe map, i.e. a special injective reimbedding of the unit square I2 in 2 (or more generally, of the cube Im in m) as considered first by S. Smale [5], defines a shift dynamics on the maximal invariant subset of I2 (or Im). It is shown that this remains true almost surely for noninjective maps provided the contraction rate of the mapping in the stable direction is sufficiently strong, and bounds for this rate are given.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212211
@article{bwmeta1.element.bwnjournal-article-fmv152i3p267bwm,
     author = {H. Bothe},
     title = {Shift spaces and attractors in noninvertible horseshoes},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {267-289},
     zbl = {0884.58063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i3p267bwm}
}
Bothe, H. Shift spaces and attractors in noninvertible horseshoes. Fundamenta Mathematicae, Tome 154 (1997) pp. 267-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i3p267bwm/

[00000] [1] H. G. Bothe, Attractors of noninvertible maps, Preprint 77, IAAS, 1993.

[00001] [2] K. Falconer, Fractal Geometry, Wiley, 1990.

[00002] [3] J. Moser, Stable and Random Motions in Dynamical Systems, Ann. of Math. Stud. 77, Princeton Univ. Press, 1973. | Zbl 0271.70009

[00003] [4] F. Przytycki, On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977), 61-77.

[00004] [5] S. Smale, Diffeomorphisms with many periodic points, in: Differential and Combinatorial Topology, S. S. Cairns (ed.), Princeton Univ. Press, 1963, 63-80.

[00005] [6] C. Tricot, Jr., Two definitions of fractal dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), 57-74. | Zbl 0483.28010