A partial order where all monotone maps are definable
Goldstern, Martin ; Shelah, Saharon
Fundamenta Mathematicae, Tome 154 (1997), p. 255-265 / Harvested from The Polish Digital Mathematics Library

It is consistent that there is a partial order (P,≤) of size 1 such that every monotone function f:P → P is first order definable in (P,≤).

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212210
@article{bwmeta1.element.bwnjournal-article-fmv152i3p255bwm,
     author = {Martin Goldstern and Saharon Shelah},
     title = {A partial order where all monotone maps are definable},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {255-265},
     zbl = {0876.03027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i3p255bwm}
}
Goldstern, Martin; Shelah, Saharon. A partial order where all monotone maps are definable. Fundamenta Mathematicae, Tome 154 (1997) pp. 255-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i3p255bwm/

[00000] [KS] H. Kaiser and N. Sauer, Order polynomially complete lattices, Algebra Universalis 130 (1993), 171-176. | Zbl 0784.06004

[00001] [Sh 128] S. Shelah, Uncountable constructions for B.A., e.c. groups and Banach spaces, Israel J. Math. 51 (1985), 273-297.

[00002] [Sh 136] S. Shelah, Constructions of many complicated uncountable structures and Boolean algebras, Israel J. Math. 45 (1983), 100-146.