Interpreting reflexive theories in finitely many axioms
Shavrukov, V.
Fundamenta Mathematicae, Tome 154 (1997), p. 99-116 / Harvested from The Polish Digital Mathematics Library

For finitely axiomatized sequential theories F and reflexive theories R, we give a characterization of the relation ’F interprets R’ in terms of provability of restricted consistency statements on cuts. This characterization is used in a proof that the set of 1 (as well as 1) sentences π such that GB interprets ZF+π is Σ30-complete.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212206
@article{bwmeta1.element.bwnjournal-article-fmv152i2p99bwm,
     author = {V. Shavrukov},
     title = {Interpreting reflexive theories in finitely many axioms},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {99-116},
     zbl = {0874.03066},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i2p99bwm}
}
Shavrukov, V. Interpreting reflexive theories in finitely many axioms. Fundamenta Mathematicae, Tome 154 (1997) pp. 99-116. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i2p99bwm/

[00000] [1] A. Berarducci and P. D’Aquino, Δ0-complexity of the relation y=inF(i), Ann. Pure Appl. Logic 75 (1995), 49-56.

[00001] [2] A. Berarducci and R. Verbrugge, On the provability logic of bounded arithmetic, ibid. 61 (1993), 75-93. | Zbl 0803.03037

[00002] [3] B S. R. Buss, Bounded Arithmetic, Bibliopolis, Napoli, 1986.

[00003] [4] D P. D’Aquino, A sharpened version of McAloon’s theorem on initial segments of models of IΔ0, Ann. Pure Appl. Logic 61 (1993), 49-62.

[00004] [5] P. Hájek and P. Pudlák, Metamathematics of First-Order Arithmetic, Springer, Berlin, 1993. | Zbl 0781.03047

[00005] [6] J R. G. Jeroslow, Non-effectiveness in S. Orey's arithmetical compactness theorem, Z. Math. Logic Grundlangen Math. 17 (1971), 285-289. | Zbl 0234.02036

[00006] [7] P. Lindström, Some results on interpretability, in: Proc. 5th Scandinavian Logic Sympos., F. V. Jensen, B. H. Mayoh and K. K. Møller (eds.), Aalborg Univ. Press, 1979, 329-361.

[00007] [8] P. Lindström, On partially conservative sentences and interpretability, Proc. Amer. Math. Soc. 91 (1984), 436-443. | Zbl 0577.03028

[00008] [9] J. Paris and A. Wilkie, Counting Δ0 sets, Fund. Math. 127 (1986), 67-76. | Zbl 0627.03018

[00009] [10] J. B. Paris, A. J. Wilkie and A. R. Woods, Provability of the pigeonhole principle and the existence of infinitely many primes, J. Symbolic Logic 53 (1988), 1235-1244. | Zbl 0688.03042

[00010] [11] P. Pudlák, Cuts, consistency statements and interpretations, J. Symbolic Logic 50 (1985), 423-441. | Zbl 0569.03024

[00011] [12] P. Pudlák, On the length of proofs of finitistic consistency statements in first order theories, in: Logic Colloquium '84, J. B. Paris, A. J. Wilkie and G. M. Wilmers (eds.), North-Holland, Amsterdam, 1986, 165-196.

[00012] [13] W. Sieg, Fragments of arithmetic, Ann. Pure Appl. Logic 28 (1985), 33-71. | Zbl 0558.03029

[00013] [14] C. Smoryński, Nonstandard models and related developments, in: Harvey Friedman's Research on the Foundations of Mathematics, L. A. Harrington, M. D. Morley, A. Ščedrov and S. G. Simpson (eds.), North-Holland, Amsterdam, 1985, 179-229.

[00014] [15] V. Švejdar, A sentence that is difficult to interpret, Comment. Math. Univ. Carolin 22 (1981), 661-666. | Zbl 0484.03032

[00015] [16] A. Visser, Interpretability logic, in: Mathematical Logic, P. P. Petkov (ed.), Plenum Press, New York, 1990, 175-209. | Zbl 0793.03064

[00016] [17] A. Visser, An inside view of EXP; or, the closed fragment of the provability logic of IΔ0+Ω1 with a propositional constant for EXP, J. Symbolic Logic 57 (1992), 131-165. | Zbl 0785.03008

[00017] [18] A. Visser, The unprovability of small inconsistency, A study of local and global interpretability, Arch. Math. Logic 32 (1993), 275-298. | Zbl 0795.03080

[00018] [19] W A. J. Wilkie, On sentences interpretable in systems of arithmetic, in: Logic Colloquium '84, J. B. Paris, A. J. Wilkie and G. M. Wilmers (eds.), North-Holland, Amsterdam, 1986, 329-342.

[00019] [20] A. J. Wilkie and J. B. Paris, On the scheme of induction for bounded arithmetic formulas, Ann. Pure Appl. Logic 35 (1987), 261-302. | Zbl 0647.03046