We define a new large cardinal axiom that fits between and in the hierarchy of axioms described in [SRK]. We use this new axiom to obtain a Laver sequence for extendible cardinals, improving the known large cardinal upper bound for the existence of such sequences.
@article{bwmeta1.element.bwnjournal-article-fmv152i2p183bwm, author = {Paul Corazza}, title = {A new large cardinal and Laver sequences for extendibles}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {183-188}, zbl = {0874.03064}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i2p183bwm} }
Corazza, Paul. A new large cardinal and Laver sequences for extendibles. Fundamenta Mathematicae, Tome 154 (1997) pp. 183-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i2p183bwm/
[00000] [C] P. Corazza, The wholeness axiom and Laver sequences, Ann. Pure Appl. Logic, 98 pp., submitted. | Zbl 0999.03048
[00001] [GS] M. Gitik, and S. Shelah, On certain indestructibility of strong cardinals and a question of Hajnal, Arch. Math. Logic 28 (1989), 35-42. | Zbl 0663.03041
[00002] [K] A. Kanamori, The Higher Infinite, Springer, New York, 1994. | Zbl 0813.03034
[00003] [L] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385-388. | Zbl 0381.03039
[00004] [SRK] R. Solovay, W. Reinhardt and A. Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1978), 73-116. | Zbl 0376.02055