Let X be a completely regular space and let A(X) be a ring of continuous real-valued functions on X which is closed under local bounded inversion. We show that the structure space of A(X) is homeomorphic to a quotient of the Stone-Čech compactification of X. We use this result to show that any realcompactification of X is homeomorphic to a subspace of the structure space of some ring of continuous functions A(X).
@article{bwmeta1.element.bwnjournal-article-fmv152i2p151bwm, author = {Lothar Redlin and Saleem Watson}, title = {Structure spaces for rings of continuous functions with applications to realcompactifications}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {151-163}, zbl = {0877.54015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i2p151bwm} }
Redlin, Lothar; Watson, Saleem. Structure spaces for rings of continuous functions with applications to realcompactifications. Fundamenta Mathematicae, Tome 154 (1997) pp. 151-163. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i2p151bwm/
[00000] [1] W. Adamski, Two ultrafilter properties for vector lattices of real-valued functions, Publ. Math. Debrecen 45 (1994), 225-267. | Zbl 0833.46015
[00001] [2] R. M. Brooks, A ring of analytic functions, Studia Math. 24 (1964), 191-210. | Zbl 0199.46201
[00002] [3] H. L. Byun, L. Redlin and S. Watson, Local invertibility in subrings of C*(X), Bull. Austral. Math. Soc. 46 (1992), 449-458.
[00003] [4] H. L. Byun and S. Watson, Prime and maximal ideals in subrings of C(X), Topology Appl. 40 (1991), 45-62. | Zbl 0732.54016
[00004] [5] L. Gillman and M. Jerison, Rings of Continuous Functions, Springer, New York, 1978. | Zbl 0093.30001
[00005] [6] M. Henriksen, J. R. Isbell and D. G. Johnson, Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), 107-117. | Zbl 0101.33401
[00006] [7] M. Henriksen and D. G. Johnson, On the structure of a class of archimedean lattice-ordered algebras, Fund. Math. 50 (1961), 73-94. | Zbl 0099.10101
[00007] [8] D. Plank, On a class of subalgebras of C(X) with applications to βX, Fund. Math. 64 (1969), 41-54.
[00008] [9] L. Redlin and S. Watson, Maximal ideals in subalgebras of C(X), Proc. Amer. Math. Soc. 100 (1987), 763-766. | Zbl 0622.54011
[00009] [10] S. Willard, General Topology, Addison-Wesley, Reading, Mass., 1970.