An ordinal version of some applications of the classical interpolation theorem
Bossard, Benoît
Fundamenta Mathematicae, Tome 154 (1997), p. 55-74 / Harvested from The Polish Digital Mathematics Library

Let E be a Banach space with a separable dual. Zippin’s theorem asserts that E embeds in a Banach space E1 with a shrinking basis, and W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński have shown that E is a quotient of a Banach space E2 with a shrinking basis. These two results use the interpolation theorem established by W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński. Here, we prove that the Szlenk indices of E1 and E2 can be controlled by the Szlenk index of E, where the Szlenk index is an ordinal index associated with a separable Banach space which provides a transfinite measure of the separability of the dual space.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212199
@article{bwmeta1.element.bwnjournal-article-fmv152i1p55bwm,
     author = {Beno\^\i t Bossard},
     title = {An ordinal version of some applications of the classical interpolation theorem},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {55-74},
     zbl = {0901.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p55bwm}
}
Bossard, Benoît. An ordinal version of some applications of the classical interpolation theorem. Fundamenta Mathematicae, Tome 154 (1997) pp. 55-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p55bwm/

[00000] [B1] Bossard B., Mémoire de Thèse, Université Paris VI, 1994.

[00001] [B2] Bossard B. , Codage des espaces de Banach séparables. Familles analytiques ou coanalytiques d'espaces de Banach, C. R. Acad. Sci. Paris 316 (1993), 1005-1010.

[00002] [C] s Christensen J.P.R., Topology and Borel Structure, North-Holland Math. Stud. 10, North-Holland, 1974.

[00003] Deville R., Godefroy G. and Zizler V., Smoothness and Renormings in Banach spaces, Pitman Monographs and Surveys 64, Longman, 1993. | Zbl 0782.46019

[00004] Davis W.J., Figiel T., Johnson W.B. and Pełczyński A., Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. | Zbl 0306.46020

[00005] Ghoussoub N., Maurey B. and Schachermayer W., Slicings, selections, and their applications, Canad. J. Math. 44 (1992), 483-504. | Zbl 0780.46008

[00006] [J-R] Johnson W.B. and Rosenthal H.P., On ω*-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92.

[00007] [K-L] Kechris A.S. and Louveau A., Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987. | Zbl 0642.42014

[00008] [L1] Lancien G., Théorie de l'indice et problèmes de renormage en géométrie des espaces de Banach, Thèse de doctorat de l'Université Paris VI, 1992.

[00009] [L2] Lancien G. , Dentability indices and locally uniformly convex renormings, Rocky Mountain J. Math. 23 (1993), 635-647. | Zbl 0801.46010

[00010] [S] Szlenk W., The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. | Zbl 0169.15303

[00011] [Z] Zippin M., Banach spaces with separable duals, Trans. Amer. Math. Soc. 310 (1988), 371-379. | Zbl 0706.46015