An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality and that it is consistent that ω*{pis C*-embedded for some but not all p ∈ ω*.
@article{bwmeta1.element.bwnjournal-article-fmv152i1p21bwm, author = {Alan Dow}, title = {Extending real-valued functions in $\beta$$\kappa$}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {21-41}, zbl = {0876.03026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p21bwm} }
Dow, Alan. Extending real-valued functions in βκ. Fundamenta Mathematicae, Tome 154 (1997) pp. 21-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p21bwm/
[00000] [AS81] U. Avraham and S. Shelah, Martin’s axiom does not imply that every two -dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176. | Zbl 0457.03048
[00001] [BS87] A. Blass and S. Shelah, There may be simple and -points and the Rudin-Keisler order may be downward directed, Ann. Pure Appl. Logic 83 (1987), 213-243. | Zbl 0634.03047
[00002] [vDKvM] E. K. van Douwen, K. Kunen and J. van Mill, There can be proper dense C*-embedded subspaces in βω-ω, Proc. Amer. Math. Soc. 105 (1989), 462-470. | Zbl 0685.54001
[00003] [Dow88] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17-72. | Zbl 0696.03024
[00004] [Dow92] A. Dow, Set theory in topology, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), Elsevier, 1992, 169-197.
[00005] [DJW89] A. Dow, I. Juhász and W. Weiss, Integer-valued functions and increasing unions of first countable spaces, Israel J. Math. 67 (1989), 181-192. | Zbl 0711.54002
[00006] [DM90] A. Dow and J. Merrill, can be C*-embedded in , Topology Appl. 35 (1990), 163-175.
[00007] [HvM90] K. P. Hart and J. van Mill, Open problems on βω, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, 97-125.
[00008] [Laf93] C. Laflamme, Bounding and dominating number of families of functions on ω, Math. Logic Quart. 40 (1994), 207-223. | Zbl 0835.03015
[00009] [Mil84] A. Miller, Rational perfect set forcing, in: Axiomatic Set Theory, Contemp. Math. 31, 1984, 143-159.
[00010] [She84] S. Shelah, On cardinal invariants of the continuum, Axiomatic Set Theory, Contemp. Math. 31, 1984, 183-207.
[00011] [Tod89a] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., 1989.
[00012] [Tod89b] S. Todorčević, Tightness in products, Interim Rep. Prague Topolog. Sympos. 4 (1989), 7-8.