Extending real-valued functions in βκ
Dow, Alan
Fundamenta Mathematicae, Tome 154 (1997), p. 21-41 / Harvested from The Polish Digital Mathematics Library

An Open Coloring Axiom type principle is formulated for uncountable cardinals and is shown to be a consequence of the Proper Forcing Axiom. Several applications are found. We also study dense C*-embedded subspaces of ω*, showing that there can be such sets of cardinality c and that it is consistent that ω*{pis C*-embedded for some but not all p ∈ ω*.

Publié le : 1997-01-01
EUDML-ID : urn:eudml:doc:212197
@article{bwmeta1.element.bwnjournal-article-fmv152i1p21bwm,
     author = {Alan Dow},
     title = {Extending real-valued functions in $\beta$$\kappa$},
     journal = {Fundamenta Mathematicae},
     volume = {154},
     year = {1997},
     pages = {21-41},
     zbl = {0876.03026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p21bwm}
}
Dow, Alan. Extending real-valued functions in βκ. Fundamenta Mathematicae, Tome 154 (1997) pp. 21-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p21bwm/

[00000] [AS81] U. Avraham and S. Shelah, Martin’s axiom does not imply that every two 1-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176. | Zbl 0457.03048

[00001] [BS87] A. Blass and S. Shelah, There may be simple P1 and P2-points and the Rudin-Keisler order may be downward directed, Ann. Pure Appl. Logic 83 (1987), 213-243. | Zbl 0634.03047

[00002] [vDKvM] E. K. van Douwen, K. Kunen and J. van Mill, There can be proper dense C*-embedded subspaces in βω-ω, Proc. Amer. Math. Soc. 105 (1989), 462-470. | Zbl 0685.54001

[00003] [Dow88] A. Dow, An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17-72. | Zbl 0696.03024

[00004] [Dow92] A. Dow, Set theory in topology, in: Recent Progress in General Topology, M. Hušek and J. van Mill (eds.), Elsevier, 1992, 169-197.

[00005] [DJW89] A. Dow, I. Juhász and W. Weiss, Integer-valued functions and increasing unions of first countable spaces, Israel J. Math. 67 (1989), 181-192. | Zbl 0711.54002

[00006] [DM90] A. Dow and J. Merrill, ω2*-U(ω2) can be C*-embedded in βω2, Topology Appl. 35 (1990), 163-175.

[00007] [HvM90] K. P. Hart and J. van Mill, Open problems on βω, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, 97-125.

[00008] [Laf93] C. Laflamme, Bounding and dominating number of families of functions on ω, Math. Logic Quart. 40 (1994), 207-223. | Zbl 0835.03015

[00009] [Mil84] A. Miller, Rational perfect set forcing, in: Axiomatic Set Theory, Contemp. Math. 31, 1984, 143-159.

[00010] [She84] S. Shelah, On cardinal invariants of the continuum, Axiomatic Set Theory, Contemp. Math. 31, 1984, 183-207.

[00011] [Tod89a] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., 1989.

[00012] [Tod89b] S. Todorčević, Tightness in products, Interim Rep. Prague Topolog. Sympos. 4 (1989), 7-8.