For the Brown-Peterson spectrum BP at the prime 3, denotes Hazewinkel’s second polynomial generator of . Let denote the Bousfield localization functor with respect to . A typical example of type one finite spectra is the mod 3 Moore spectrum M. In this paper, we determine the homotopy groups for the 8 skeleton X of BP.
@article{bwmeta1.element.bwnjournal-article-fmv152i1p1bwm, author = {Yoshitaka Nakazawa and Katsumi Shimomura}, title = {The homotopy groups of the L2 -localization of a certain type one finite complex at the prime 3}, journal = {Fundamenta Mathematicae}, volume = {154}, year = {1997}, pages = {1-20}, zbl = {0880.55010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p1bwm} }
Nakazawa, Yoshitaka; Shimomura, Katsumi. The homotopy groups of the L2 -localization of a certain type one finite complex at the prime 3. Fundamenta Mathematicae, Tome 154 (1997) pp. 1-20. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv152i1p1bwm/
[00000] [1] Y. Arita and K. Shimomura, The chromatic -term at the prime 3, Hiroshima Math. J. 26 (1996), 415-431. | Zbl 0869.55010
[00001] [2] M. J. Hopkins and B. H. Gross, The rigid analytic period mapping, Lubin-Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994), 76-86. | Zbl 0857.55003
[00002] [3] M. Mahowald and K. Shimomura, The Adams-Novikov spectral sequence for the -localization of a -spectrum, in: Contemp. Math. 146, Amer. Math. Soc., 1993, 237-250. | Zbl 0791.55005
[00003] [4] H. R. Miller, D. C. Ravenel, and W. S. Wilson, Periodic phenomena in Adams-Novikov spectral sequence, Ann. of Math. 106 (1977), 469-516. | Zbl 0374.55022
[00004] [5] D. C. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, 1986.
[00005] [6] D. C. Ravenel, Nilpotence and Periodicity in Stable Homotopy Theory, Ann. of Math. Stud. 128, Princeton Univ. Press, 1992.
[00006] [7] K. Shimomura, On the Adams-Novikov spectral sequence and products of β-elements, Hiroshima Math. J. 16 (1986), 209-224. | Zbl 0605.55013
[00007] [8] K. Shimomura, The homotopy groups of the -localized Mahowald spectrum X⟨1⟩, Forum Math. 7 (1995), 685-707. | Zbl 0835.55009
[00008] [9] K. Shimomura, The homotopy groups of the -localized Toda-Smith spectrum V(1) at the prime 3, Trans. Amer. Math. Soc., to appear. | Zbl 0869.55012
[00009] [10] K. Shimomura and H. Tamura, Non-triviality of some compositions of β-elements in the stable homotopy of Moore spaces, Hiroshima Math. J. 16 (1986), 121-133. | Zbl 0606.55009
[00010] [11] K. Shimomura and A. Yabe, The homotopy groups , Topology 34 (1995), 261-289. | Zbl 0832.55011