Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of .
@article{bwmeta1.element.bwnjournal-article-fmv151i3p279bwm, author = {Nobuyuki Kemoto and Tsugunori Nogura and Kerry Smith and Yukinobu Yajima}, title = {Normal subspaces in products of two ordinals}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {279-297}, zbl = {0876.54006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p279bwm} }
Kemoto, Nobuyuki; Nogura, Tsugunori; Smith, Kerry; Yajima, Yukinobu. Normal subspaces in products of two ordinals. Fundamenta Mathematicae, Tome 149 (1996) pp. 279-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p279bwm/
[00000] [KOT] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Topology Appl. 45 (1992), 245-260. | Zbl 0789.54006
[00001] [KS] N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, Topology Appl., to appear. | Zbl 0883.54009
[00002] [Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.