Normal subspaces in products of two ordinals
Kemoto, Nobuyuki ; Nogura, Tsugunori ; Smith, Kerry ; Yajima, Yukinobu
Fundamenta Mathematicae, Tome 149 (1996), p. 279-297 / Harvested from The Polish Digital Mathematics Library

Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of (λ+1)2.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212195
@article{bwmeta1.element.bwnjournal-article-fmv151i3p279bwm,
     author = {Nobuyuki Kemoto and Tsugunori Nogura and Kerry Smith and Yukinobu Yajima},
     title = {Normal subspaces in products of two ordinals},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {279-297},
     zbl = {0876.54006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p279bwm}
}
Kemoto, Nobuyuki; Nogura, Tsugunori; Smith, Kerry; Yajima, Yukinobu. Normal subspaces in products of two ordinals. Fundamenta Mathematicae, Tome 149 (1996) pp. 279-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p279bwm/

[00000] [KOT] N. Kemoto, H. Ohta and K. Tamano, Products of spaces of ordinal numbers, Topology Appl. 45 (1992), 245-260. | Zbl 0789.54006

[00001] [KS] N. Kemoto and K. D. Smith, The product of two ordinals is hereditarily countably metacompact, Topology Appl., to appear. | Zbl 0883.54009

[00002] [Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.