Categoricity of theories in Lκω , when κ is a measurable cardinal. Part 1
Shelah, Saharon ; Kolman, Oren
Fundamenta Mathematicae, Tome 149 (1996), p. 209-240 / Harvested from The Polish Digital Mathematics Library

We assume a theory T in the logic Lκω is categorical in a cardinal λ κ, and κ is a measurable cardinal. We prove that the class of models of T of cardinality < λ (but ≥ |T|+κ) has the amalgamation property; this is a step toward understanding the character of such classes of models.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212193
@article{bwmeta1.element.bwnjournal-article-fmv151i3p209bwm,
     author = {Saharon Shelah and Oren Kolman},
     title = {Categoricity of theories in L$\kappa$$\omega$ , when $\kappa$ is a measurable cardinal. Part 1},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {209-240},
     zbl = {0882.03039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p209bwm}
}
Shelah, Saharon; Kolman, Oren. Categoricity of theories in Lκω , when κ is a measurable cardinal. Part 1. Fundamenta Mathematicae, Tome 149 (1996) pp. 209-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p209bwm/

[00000] [CK] C. C. Chang and H. J. Keisler, Model Theory, North-Holland, 1973.

[00001] [D] M. Dickmann, Large Infinitary Languages: Model Theory, North-Holland, 1975. | Zbl 0324.02010

[00002] [D1] M. Dickmann, Larger infinitary languages, Chapter IX of Model-Theoretic Logics, J. Barwise and S. Feferman (eds.), Perspect. Math. Logic, Springer, New York, 1985, 317-363.

[00003] [HaSh323] B. Hart and S. Shelah, Categoricity over P for first order T or categoricity for φLω1ω can stop at k while holding for 0,...,k-1, Israel J. Math. 70 (1990), 219-235.

[00004] [HoSh109] W. Hodges and S. Shelah, Infinite games and reduced products, Ann. Math. Logic 20 (1981), 77-108. | Zbl 0501.03014

[00005] [J] T. Jech, Set Theory, Academic Press, 1978.

[00006] [K] H. J. Keisler, Model Theory for Infinitary Logic, North-Holland, 1971. | Zbl 0222.02064

[00007] [L] R. Laver, On Fraïssé's order type conjecture, Ann. of Math. 93 (1971), 89-111. | Zbl 0208.28905

[00008] [MaSh285] M. Makkai and S. Shelah, Categoricity of theories in Lκw, with κ a compact cardinal, Ann. Pure Appl. Logic 47 (1990), 41-97. | Zbl 0704.03015

[00009] [M] M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-518. | Zbl 0151.01101

[00010] [N] M. Nadel, Lω1ω and admissible fragments, Chapter VIII of Model-Theoretic Logics, J. Barwise and S. Feferman (eds.), Perspect. Math. Logic, Springer, New York, 1985, 271-316.

[00011] [Re] J. P. Ressayre, Sur les théories du premier ordre catégorique en un cardinal, Trans. Amer. Math. Soc. 142 (1969), 481-505. | Zbl 0209.30403

[00012] [Ro] F. Rowbottom, The Łoś conjecture for uncountable theories, Notices Amer. Math. Soc. 11 (1964), 284.

[00013] [Sh2] S. Shelah, Stable theories, Israel J. Math. 7 (1969), 187-202. | Zbl 0193.30002

[00014] [Sh31] S. Shelah, Solution to Łoś conjecture for uncountable languages, in: Proc. Sympos. Pure Math. 25, Amer. Math. Soc., 1974, 53-74.

[00015] [Sh48] S. Shelah, Categoricity in 1 of sentences in Lω1,ω(Q), Israel J. Math. 20 (1975), 127-148.

[00016] [Sh87] S. Shelah, Classification theory for non-elementary classes I: The number of uncountable models of ψLω1,ω, Parts A, B, Israel J. Math. 46 (1983), 212-240, 241-273.

[00017] [Sh88] S. Shelah, Classification theory for non elementary classes II. Abstract elementary classes, in: Classification Theory, Proc. US-Israel Workshop on Model Theory in Mathematical Logic, Springer, 1987, 419-497.

[00018] [Sh220] S. Shelah, Existence of many L,λ-equivalent, non-isomorphic models of T of power λ, Ann. Pure Appl. Logic 34 (1987), 291-310.

[00019] [Sh300] S. Shelah, Universal classes, in: Classification Theory, Proc. US-Israel Workshop on Model Theory in Mathematical Logic, Springer, 1987, 264-418.

[00020] [Sh420] S. Shelah, Advances in cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, N. W. Sauer et al. (eds.), Kluwer Acad. Publ., 1993, 355-383.

[00021] [Sh394] S. Shelah, Categoricity of abstract classes with amalgamation, preprint.

[00022] [Sh472] S. Shelah, Categoricity for infinitary logics II, Fund. Math., submitted.

[00023] [Sh576] S. Shelah, On categoricity of abstract elementary classes: in three cardinals imply existence of a model of the next, preprint.

[00024] [Sh600] S. Shelah, Continuation of [Sh576], in preparation.

[00025] [Sh600] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, North-Holland, 1978.

[00026] [Sh-a] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, Classification Theory and the Number of Non-Isomorphic Models, revised, Stud. Logic Found. Math. 92, North-Holland, 1990.

[00027] [Sh-h] S. Shelah, Classification Theory and the Number of Non-Isomorphic Models, Universal classes, preprint.