A lamination is a continuum which locally is the product of a Cantor set and an arc. We investigate the topological structure and embedding properties of laminations. We prove that a nondegenerate lamination cannot be tree-like and that a planar lamination has at least four complementary domains. Furthermore, a lamination in the plane can be obtained by a lakes of Wada construction.
@article{bwmeta1.element.bwnjournal-article-fmv151i3p195bwm, author = {Robbert Fokkink and Lex Oversteegen}, title = {The geometry of laminations}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {195-207}, zbl = {0880.54024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p195bwm} }
Fokkink, Robbert; Oversteegen, Lex. The geometry of laminations. Fundamenta Mathematicae, Tome 149 (1996) pp. 195-207. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i3p195bwm/
[00000] [A-F] J. M. Aarts and R. J. Fokkink, On composants of the bucket handle, Fund. Math. 139 (1992), 193-208. | Zbl 0759.54017
[00001] [A-H-O] J. M. Aarts, C. L. Hagopian and L. G. Oversteegen, Orientability of matchbox manifolds, Pacific J. Math. 150 (1991), 1-11. | Zbl 0769.54043
[00002] [A-M] J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math. 131 (1988), 53-67. | Zbl 0677.54032
[00003] [A-O] J. M. Aarts and L. G. Oversteegen, The geometry of Julia sets in the exponential family, Trans. Amer. Math. Soc. 338 (1993), 897-918. | Zbl 0809.54034
[00004] [A-O 2] J. M. Aarts and L. G. Oversteegen, Flowbox manifolds, Trans. Amer. Math. Soc. 327 (1991), 449-463. | Zbl 0768.54027
[00005] [B-F] H. Bohr and W. Fenchel, Ein Satz über stabile Bewegungen in der Ebene, Dansk Mat. Fys. Med. 14 (1936), 3-15. | Zbl 0014.11001
[00006] [C-B] A. J. Casson and S. A. Bleiler, Automorphisms of Surfaces after Nielsen and Thurston, Cambridge Univ. Press, 1988. | Zbl 0649.57008
[00007] [C-C] J. H. Case and R. E. Chamberlain, Characterization of tree-like continua, Pacific J. Math. 10 (1960), 73-84.
[00008] [C-N] C. Camacho and A. L. Neto, Geometric Theory of Foliations, Birkhäuser, Basel, 1985.
[00009] [D] R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Redwood City, 1987.
[00010] [F] R. J. Fokkink, The structure of trajectories, Thesis, University of Delft, 1991.
[00011] [G] C. Gutierrez, Structural stability for flows on the torus with a cross-cap, Trans. Amer. Math. Soc. 241 (1978), 311-320. | Zbl 0396.58017
[00012] [Ka] H. Kato, On expansiveness of shift homeomorphisms of inverse limits of graphs, Fund. Math. 137 (1991), 201-210. | Zbl 0738.54017
[00013] [Kn] B. Knaster, Fund. Math. 3 (1922), 209.
[00014] [K] N. N. Konstantinov, Complement of selfcoiling curves in the plane, Fund. Math. 57 (1965), 147-171.
[00015] [K2] N. N. Konstantinov, Non-self-intersecting curves in the plane, Mat. Sb. (N.S.) 54 (1961), 253-294 (in Russian).
[00016] [K-S] H. B. Keynes and M. Sears, Modeling expansion in real flows, Pacific J. Math. 85 (1979), 111-124.
[00017] [M-P] W. de Melo and J. Palis Jr., Geometric Theory of Dynamical Systems. An Introduction, Springer, New York, 1982.
[00018] [P] M. Peixoto, Structural stability on two-dimensional manifolds, Topology 1 (1962), 101. | Zbl 0107.07103
[00019] [Pl1] R. V. Plykin, Sources and sinks of A-diffeomorphisms of surfaces, Mat. Sb. 94 (1974), 243-264 (in Russian).
[00020] [Pl2] R. V. Plykin, On the geometry of hyperbolic attractors of smooth cascades, Uspekhi Mat. Nauk 39 (6) (1984), 75-113 (in Russian).
[00021] [S] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. | Zbl 0202.55202
[00022] [T] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), 418-431. | Zbl 0674.57008
[00023] [Wh] H. Whitney, Regular families of curves, Ann. of Math. 34 (1933), 244-270. | Zbl 0006.37101
[00024] [Wi1] R. F. Williams, Expanding attractors, Inst. Hautes Etudes Sci. Publ. Math. 43 (1974), 169-203.
[00025] [Wi2] R. F. Williams, The DA map of Smale and structural stability, in: Global Analysis, Proc. Sympos. Pure Math. 14, 1970, 329-334.
[00026] [Z1] A.Yu. Zhirov, A list of hyperbolic attractors on orientable surfaces and applications to pseudo-Anosov homeomorphisms, Dokl. Akad. Nauk 330 (1993), 683-686 (in Russian).
[00027] [Z2] A.Yu. Zhirov, Hyperbolic attractors of diffeomorphisms of orientable surfaces, Mat. Sb. 186 (1995), 59-82 (in Russian).