The real line ℝ may be characterized as the unique non-atomic directed partially ordered abelian group which is monotone σ-complete (countable increasing bounded sequences have suprema), has the countable refinement property (countable sums of positive (possibly infinite) elements have common refinements) and is linearly ordered. We prove here that the latter condition is not redundant, thus solving an old problem by A. Tarski, by proving that there are many spaces (in particular, of arbitrarily large cardinality) satisfying all the above listed axioms except linear ordering.
@article{bwmeta1.element.bwnjournal-article-fmv151i2p177bwm, author = {Friedrich Wehrung}, title = {Monotone $\sigma$-complete groups with unbounded refinement}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {177-187}, zbl = {0932.06012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i2p177bwm} }
Wehrung, Friedrich. Monotone σ-complete groups with unbounded refinement. Fundamenta Mathematicae, Tome 149 (1996) pp. 177-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i2p177bwm/
[00000] [1] A. Bigard, K. Keimel et S. Wolfenstein, Groupes et anneaux réticulés, Lecture Notes in Math. 608, Springer, 1977. | Zbl 0384.06022
[00001] [2] R. Bradford, Cardinal addition and the axiom of choice, Ann. Math. Logic 3 (1971), 111-196. | Zbl 0287.02041
[00002] [3] R. Chuaqui, Simple cardinal algebras, Notas Mat. Univ. Católica de Chile 6 (1976), 106-131.
[00003] [4] A. B. Clarke, A theorem on simple cardinal algebras, Michigan Math. J. 3 (1955-56), 113-116.
[00004] [5] A. B. Clarke, On the representation of cardinal algebras by directed sums, Trans. Amer. Math. Soc. 91 (1959), 161-192. | Zbl 0085.25904
[00005] [6] P. A. Fillmore, The dimension theory of certain cardinal algebras, Trans. Amer. Math. Soc. 117 (1965), 21-36. | Zbl 0146.01803
[00006] [7] K. R. Goodearl, Partially Ordered Abelian Groups with Interpolation, Math. Surveys Monographs 20, Amer. Math. Soc., 1986.
[00007] [8] K. R. Goodearl, D. E. Handelman and J. W. Lawrence, Affine representations of Grothendieck groups and applications to Rickart C*-algebras and -continuous regular rings, Mem. Amer. Math. Soc. 234 (1980). | Zbl 0435.16005
[00008] [9] A. Tarski, Cardinal Algebras, Oxford Univ. Press, New York, 1949.
[00009] [10] F. Wehrung, Injective positively ordered monoids I, J. Pure Appl. Algebra 83 (1992), 43-82. | Zbl 0790.06016
[00010] [11] F. Wehrung, Metric properties of positively ordered monoids, Forum Math. 5 (1993), 183-201. | Zbl 0769.06008
[00011] [12] F. Wehrung, Non-measurability properties of interpolation vector spaces, preprint. | Zbl 0916.06018