A note on strange nonchaotic attractors
Keller, Gerhard
Fundamenta Mathematicae, Tome 149 (1996), p. 139-148 / Harvested from The Polish Digital Mathematics Library

For a class of quasiperiodically forced time-discrete dynamical systems of two variables (θ,x) ∈ T1×+ with nonpositive Lyapunov exponents we prove the existence of an attractor Γ̅ with the following properties:  1. Γ̅ is the closure of the graph of a function x = ϕ(θ). It attracts Lebesgue-a.e. starting point in T1×+. The set θ:ϕ(θ) ≠ 0 is meager but has full 1-dimensional Lebesgue measure.  2. The omega-limit of Lebesgue-a.e point in T1×+ is Γ̅, but for a residual set of points in T1×+ the omega limit is the circle (θ,x):x = 0 contained in Γ̅.  3. Γ̅ is the topological support of a BRS measure. The corresponding measure theoretical dynamical system is isomorphic to the forcing rotation.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212186
@article{bwmeta1.element.bwnjournal-article-fmv151i2p139bwm,
     author = {Gerhard Keller},
     title = {A note on strange nonchaotic attractors},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {139-148},
     zbl = {0899.58033},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i2p139bwm}
}
Keller, Gerhard. A note on strange nonchaotic attractors. Fundamenta Mathematicae, Tome 149 (1996) pp. 139-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i2p139bwm/

[00000] [1] U. Bellack, talk at the Plenarkolloquium des Forschungsschwerpunkts "Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme", July 12, 1995, Bad Windsheim.

[00001] [2] C. Grebogi, E. Ott, S. Pelikan and J. A. Yorke, Strange attractors that are not chaotic, Phys. D 13 (1984), 261-268. | Zbl 0588.58036

[00002] [3] F. Hofbauer and G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z. 180 (1982), 119-140. | Zbl 0485.28016

[00003] [4] I. Kan, Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin, Bull. Amer. Math. Soc. 31 (1994), 68-74. | Zbl 0853.58077

[00004] [5] M. St. Pierre, Diplomarbeit, Erlangen, 1994.

[00005] [6] A. S. Pikovsky and U. Feudel, Characterizing strange nonchaotic attractors, Chaos 5 (1995), 253-260. | Zbl 1055.37519