Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques
Bodart, Olivier ; Zinsmeister, Michel
Fundamenta Mathematicae, Tome 149 (1996), p. 121-137 / Harvested from The Polish Digital Mathematics Library

This paper deals with the Hausdorff dimension of the Julia set of quadratic polynomials. It is divided in two parts. The first aims to compute good numerical approximations of the dimension for hyperbolic points. For such points, Ruelle’s thermodynamical formalism applies, hence computing the dimension amounts to computing the zero point of a pressure function. It is this pressure function that we approximate by a Monte-Carlo process combined with a shift method that considerably decreases the computational cost. The second part is a continuity result of the dimension on the real axis at the parabolic point 1/4 for Pc(z)=z2+c.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212185
@article{bwmeta1.element.bwnjournal-article-fmv151i2p121bwm,
     author = {Olivier Bodart and Michel Zinsmeister},
     title = {Quelques r\'esultats sur la dimension de Hausdorff des ensembles de Julia des polyn\^omes quadratiques},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {121-137},
     zbl = {0882.30016},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i2p121bwm}
}
Bodart, Olivier; Zinsmeister, Michel. Quelques résultats sur la dimension de Hausdorff des ensembles de Julia des polynômes quadratiques. Fundamenta Mathematicae, Tome 149 (1996) pp. 121-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i2p121bwm/

[00000] [1] J. Aaronson, M. Denker and M. Urbański, Ergodic theory for Markov fibered systems and parabolic rationnal maps, Trans. Amer. Math. Soc. 337 (1993), 495-548. | Zbl 0789.28010

[00001] [2] N. Bouleau and D. Lépingle, Numerical Methods for Stochastic Processes, Wiley, 1994.

[00002] [3] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, 1975. | Zbl 0308.28010

[00003] [4] M. Denker and M. Urbański, Hausdorff and conformal measures on Julia sets with a rationally indifferent fixed point, J. London Math. Soc. (2) 43 (1991), 107-118. | Zbl 0734.28007

[00004] [5] M. Denker and M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationally indifferent fixed points, Forum Math. 3 (1991), 561-579. | Zbl 0745.28008

[00005] [6] A. Douady et J. Hubbard, Etude dynamique des polynômes complexes I, II, Publ. Math. d'Orsay 84-02, 85-04.

[00006] [7] L. Garnett, A computer algorithm for determining the Hausdorff dimension of certain fractals, Math. Comp. 51 (1988), 291-300. | Zbl 0651.58030

[00007] [8] T. Ransford, Variation of Hausdorff dimension of Julia sets, Ergodic Theory Dynam. Systems 13 (1993), 167-174. | Zbl 0788.58035

[00008] [9] M. Reed and B. Simon, Methods of Modern Mathematical Physics, tome IV, Academic Press, 1978.

[00009] [10] D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems 2 (1982), 99-108. | Zbl 0506.58024

[00010] [11] M. Shishikura, The boundary of the Mandelbrot set has Hausdorff dimension two, in: Complex Analytic Methods in Dynamical Systems, Astérisque 222 (1994), 389-405. | Zbl 0813.58047