Embedding partially ordered sets into ωω
Farah, Ilijas
Fundamenta Mathematicae, Tome 149 (1996), p. 53-95 / Harvested from The Polish Digital Mathematics Library

We investigate some natural questions about the class of posets which can be embedded into ⟨ω,≤*⟩. Our main tool is a simple ccc forcing notion HE which generically embeds a given poset E into ⟨ω,≤*⟩ and does this in a “minimal” way (see Theorems 9.1, 10.1, 6.1 and 9.2).

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212183
@article{bwmeta1.element.bwnjournal-article-fmv151i1p53bwm,
     author = {Ilijas Farah},
     title = {Embedding partially ordered sets into $^$\omega$ $\omega$$
            },
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {53-95},
     zbl = {0861.03039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i1p53bwm}
}
Farah, Ilijas. Embedding partially ordered sets into $^ω ω$
            . Fundamenta Mathematicae, Tome 149 (1996) pp. 53-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i1p53bwm/

[00000] [1] B. Balcar, T. Jech and J. Zapletal, Semicohen Boolean algebras, preprint, 1995.

[00001] [2] J. Baumgartner and R. Laver, Iterated perfect-set forcing, Ann. Math. Logic 17 (1979), 271-288. | Zbl 0427.03043

[00002] [3] J. Brendle and T. LaBerge, Forcing tightness in products, preprint, 1994. | Zbl 0867.54002

[00003] [4] M. Burke, Notes on embedding partially ordered sets into ⟨ω,<*⟩, preprint, 1995.

[00004] [5] J. Cummings, M. Scheepers and S. Shelah, Type rings, to appear.

[00005] [6] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, London Math. Soc. Lecture Note Ser. 115, Cambridge University Press, 1987.

[00006] [7] P. L. Dordal, Towers in [ω]ω and ω, Ann. Pure Appl. Logic 45 (1989), 247-277.

[00007] [8] W. B. Easton, Powers of regular cardinals, Ann. Math. Logic 1 (1970), 139-178. | Zbl 0209.30601

[00008] [9] P. Erdős, A. Hajnal, A. Maté and R. Rado, Combinatorial Set Theory - Parti- tion Relations for Cardinals, North-Holland, 1984. | Zbl 0573.03019

[00009] [10] F. Galvin, Letter of August 3, 1995.

[00010] [11] F. Galvin, Letter of August 5, 1995.

[00011] [12] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. | Zbl 40.0446.02

[00012] [13] S. Hechler, On the existence of certain cofinal subsets of ω, in: Proc. Sympos. Pure Math. 13, Amer. Math. Soc., 1974, 155-173.

[00013] [14] S. Koppelberg and S. Shelah, Subalgebras of Cohen algebras need not be Cohen, preprint, 1995. | Zbl 0864.06006

[00014] [15] D. W. Kueker, Countable approximations and Löwenheim-Skolem theorems, Ann. Math. Logic 11 (1977), 77-103. | Zbl 0364.02009

[00015] [16] K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford University, 1968.

[00016] [17] K. Kunen, ⟨κ,λ*⟩-gaps under MA, preprint, 1976.

[00017] [18] K. Kunen, Set Theory - An Introduction to Independence Proofs, North-Holland, 1980. | Zbl 0443.03021

[00018] [19] G. Kurepa, L'hypothèse du continu et le problème de Souslin, Publ. Inst. Math. Belgrade 2 (1948), 26-36.

[00019] [20] R. Laver, Linear orderings in ω under eventual dominance, in: Logic Colloquium '78, North-Holland, 1979, 299-302.

[00020] [21] J. C. Oxtoby, Measure and Category, Springer, 1970.

[00021] [22] K. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. (Rozprawy Mat.) 68 (1970). | Zbl 0212.32404

[00022] [23] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126. | Zbl 67.0990.01

[00023] [24] M. Scheepers, Gaps in ω, in: Israel Math. Conf. Proc. 6, Amer. Math. Soc., 1993, 439-561.

[00024] [25] M. Scheepers, Cardinals of countable cofinality and eventual domination, Order 11 (1995), 221-235. | Zbl 0817.06003

[00025] [26] M. Scheepers, The Boise problem book, http://www.unipissing.ca/topology/.

[00026] [27] R. Solovay, Discontinuous homomorphisms of Banach algebras, preprint, 1976.

[00027] [28] S. Todorčević, Special square sequences, Proc. Amer. Math. Soc. 105 (1989), 199-205. | Zbl 0675.03028

[00028] [29] S. Todorčević and I. Farah, Some Applications of the Method of Forcing, Mathematical Institute, Belgrade, and Yenisei, Moscow, 1995.