Let f be a measurable function such that at each point x of a set E, where k is a positive integer, λ > 0 and is the symmetric difference of f at x of order k. Marcinkiewicz and Zygmund [5] proved that if λ = k and if E is measurable then the Peano derivative exists a.e. on E. Here we prove that if λ > k-1 then the Peano derivative exists a.e. on E and that the result is false if λ = k-1; it is further proved that if λ is any positive integer and if the approximate Peano derivative exists on E then exists a.e. on E.
@article{bwmeta1.element.bwnjournal-article-fmv151i1p21bwm, author = {S. Mukhopadhyay and S. Mitra}, title = {An extension of a theorem of Marcinkiewicz and Zygmund on differentiability}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {21-38}, zbl = {0869.26002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv151i1p21bwm} }
Mukhopadhyay, S.; Mitra, S. An extension of a theorem of Marcinkiewicz and Zygmund on differentiability. Fundamenta Mathematicae, Tome 149 (1996) pp. 21-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv151i1p21bwm/
[00000] [1] P. S. Bullen and S. N. Mukhopadhyay, Peano derivatives and general integrals, Pacific J. Math. 47 (1973), 43-58. | Zbl 0252.26002
[00001] [2] A. Denjoy, Sur l'intégration des coefficients différentielles d'ordre supérieur, Fund. Math. 25 (1935), 273-326. | Zbl 61.1115.03
[00002] [3] H. Fejzic and C. E. Weil, Repairing the proof of a classical differentiation result, Real Anal. Exchange 19 (1993-94), 639-643. | Zbl 0818.26002
[00003] [4] J. Marcinkiewicz, Sur les séries de Fourier, Fund. Math. 27 (1937), 38-69.
[00004] [5] J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometric series, Fund. Math. 26 (1936), 1-43. | Zbl 0014.11102
[00005] [6] S. N. Mukhopadhyay and S. Mitra, Measurability of Peano derivates and approximate Peano derivates, Real Anal. Exchange 20 (1994-95), 768-775. | Zbl 0832.26002
[00006] [7] S. Saks, Theory of the Integral, Dover, 1964.
[00007] [8] E. M. Stein and A. Zygmund, On the differentiability of functions, Studia Math. 23 (1964), 247-283. | Zbl 0122.30203
[00008] [9] A. Zygmund, Trigonometric Series I, II, Cambridge Univ. Press, 1968. | Zbl 0628.42001