On the homotopy category of Moore spaces and the cohomology of the category of abelian groups
Baues, Hans-Joachim ; Hartl, Manfred
Fundamenta Mathematicae, Tome 149 (1996), p. 265-289 / Harvested from The Polish Digital Mathematics Library

The homotopy category of Moore spaces in degree 2 represents a nontrivial cohomology class in the cohomology of the category of abelian groups. We describe various properties of this class. We use James-Hopf invariants to obtain explicitly the image category under the functor chain complex of the loop space.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212177
@article{bwmeta1.element.bwnjournal-article-fmv150i3p265bwm,
     author = {Hans-Joachim Baues and Manfred Hartl},
     title = {On the homotopy category of Moore spaces and the cohomology of the category of abelian groups},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {265-289},
     zbl = {0858.55010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p265bwm}
}
Baues, Hans-Joachim; Hartl, Manfred. On the homotopy category of Moore spaces and the cohomology of the category of abelian groups. Fundamenta Mathematicae, Tome 149 (1996) pp. 265-289. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p265bwm/

[00000] [1] J. F. Adams and P. J. Hilton, On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305-330. | Zbl 0071.16403

[00001] [2] H.-J. Baues, Algebraic Homotopy, Cambridge Stud. Adv. Math. 15, Cambridge University Press, 1988.

[00002] [3] H.-J. Baues, Combinatorial Homotopy and 4-Dimensional Complexes, de Gruyter, Berlin, 1991.

[00003] [4] H.-J. Baues, Homotopy Type and Homology, Oxford Math. Monograph, Oxford University Press, 1996. | Zbl 0857.55001

[00004] [5] H.-J. Baues, Commutator Calculus and Groups of Homotopy Classes, London Math. Soc. Lecture Note Ser. 50, Cambridge University Press, 1981. | Zbl 0473.55001

[00005] [6] H.-J. Baues, Homotopy types, in: Handbook of Algebraic Topology, Chapter I, I. M. James (ed.), Elsevier, 1995, 1-72.

[00006] [7] H.-J. Baues, On the cohomology of categories, universal Toda brackets, and homotopy pairs, K-Theory, to appear.

[00007] [8] H.-J. Baues and W. Dreckmann, The cohomology of homotopy categories and the general linear group, K-Theory 3 (1989), 307-338. | Zbl 0701.18009

[00008] [9] H.-J. Baues and G. Wirsching, The cohomology of small categories, J. Pure Appl. Algebra 38 (1985), 187-211. | Zbl 0587.18006

[00009] [10] K. A. Hardie, On the category of homotopy pairs, Topology Appl. 14 (1982), 59-69. | Zbl 0499.55002

[00010] [11] P. Hilton, Homotopy Theory and Duality, Gordon and Breach, 1965.

[00011] [12] I. M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.

[00012] [13] M. Jibladze and T. Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), 253-296. | Zbl 0724.18005

[00013] [14] T. Pirashvili and F. Waldhausen, MacLane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992), 81-98. | Zbl 0767.55010

[00014] [15] J. H. C. Whitehead, A certain exact sequence, Ann. of Math. 52 (1950), 51-110. | Zbl 0037.26101