Let J be the Julia set of a conformal dynamics f. Provided that f is polynomial-like we prove that the harmonic measure on J is mutually absolutely continuous with the measure of maximal entropy if and only if f is conformally equivalent to a polynomial. This is no longer true for generalized polynomial-like maps. But for such dynamics the coincidence of classes of these two measures turns out to be equivalent to the existence of a conformal change of variable which reduces the dynamical system to another one for which the harmonic measure equals the measure of maximal entropy.
@article{bwmeta1.element.bwnjournal-article-fmv150i3p237bwm, author = {I. Popovici and Alexander Volberg}, title = {Rigidity of harmonic measure}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {237-244}, zbl = {0870.30019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p237bwm} }
Popovici, I.; Volberg, Alexander. Rigidity of harmonic measure. Fundamenta Mathematicae, Tome 149 (1996) pp. 237-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p237bwm/
[00000] [B] Z. Balogh, Rigidity of harmonic measure on totally disconnected fractals, preprint, Michigan State University, April 1995.
[00001] [BPV] Z. Balogh, I. Popovici and A. Volberg, Conformally maximal polynomial-like dynamics and invariant harmonic measure, preprint, Uppsala Univ., U.U.D.M. Report 1994:32.
[00002] [BV] Z. Balogh et A. Volberg, Principe de Harnack à la frontière pour des répulseurs holomorphes non récurrents, C. R. Acad. Sci. Paris 319 (1994), 351-354.
[00003] [Br] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-145. | Zbl 0127.03401
[00004] [DH] A. Douady and F. Hubbard, On the dynamics of polynomial like mappings, Ann. Sci. Ecole Norm. Sup. 18 (1985), 287-345. | Zbl 0587.30028
[00005] [Fo] S. R. Foguel, The Ergodic Theory of Markov Processes, Math. Stud. 21, Van Nostrand, New York, 1969.
[00006] [FLM] A. Freire, A. Lopes and R. Ma né, An invariant measure for rational maps, Bol. Soc. Brasil Mat. 14 (1983), 45-62.
[00007] [Lo] A. Lopes, Equilibrium measure for rational functions, Ergodic Theory Dynam. Systems 6 (1986), 393-399.
[00008] [Ly1] M. Lyubich, Entropy of the analytic endomorphisms of the Riemann sphere, Funktsional. Anal. i Prilozhen. 15 (4) (1981), 83-84 (in Russian).
[00009] [Ly2] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-386.
[00010] [LV] M. Yu. Lyubich and A. Volberg, A comparison of harmonic and maximal measures on Cantor repellers, J. Fourier Anal. Appl. 1 (1995), 359-379.
[00011] [M] R. Ma né, On the uniqueness of the maximizing measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 27-43.
[00012] [MR] R. Ma né and L. F. da Rocha, Julia sets are uniformly perfect, Proc. Amer. Math. Soc. 116 (1992), 251-257. | Zbl 0763.30010
[00013] [SS] M. Shub and D. Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), 285-289. | Zbl 0583.58022
[00014] [Z1] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Mat. 99 (1990), 627-649. | Zbl 0820.58038
[00015] [Z2] A. Zdunik, Invariant measure in the class of harmonic measures for polynomial-like mappings, preprint 538, Inst. Math., Polish Acad. Sci., 1995.