The σ-ideal of closed smooth sets does not have the covering property
Uzcátegui, Carlos
Fundamenta Mathematicae, Tome 149 (1996), p. 227-236 / Harvested from The Polish Digital Mathematics Library

We prove that the σ-ideal I(E) (of closed smooth sets with respect to a non-smooth Borel equivalence relation E) does not have the covering property. In fact, the same holds for any σ-ideal containing the closed transversals with respect to an equivalence relation generated by a countable group of homeomorphisms. As a consequence we show that I(E) does not have a Borel basis.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212173
@article{bwmeta1.element.bwnjournal-article-fmv150i3p227bwm,
     author = {Carlos Uzc\'ategui},
     title = {The $\sigma$-ideal of closed smooth sets does not have the covering property},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {227-236},
     zbl = {0865.03040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p227bwm}
}
Uzcátegui, Carlos. The σ-ideal of closed smooth sets does not have the covering property. Fundamenta Mathematicae, Tome 149 (1996) pp. 227-236. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p227bwm/

[00000] [1] J. Burgess, A selection theorem for group actions, Pacific J. Math. 80 (1979), 333-336. | Zbl 0381.54009

[00001] [2] G. Debs et J. Saint Raymond, Ensembles d'unicité et d'unicité au sens large, Ann. Inst. Fourier (Grenoble), 37(3) (1987), 217-239. | Zbl 0618.42004

[00002] [3] L. A. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-928. | Zbl 0778.28011

[00003] [4] A. S. Kechris, The descriptive set theory of σ-ideals of compact sets, in: Logic Colloquium'88, R. Ferro, C. Bonotto, S. Valentini and A. Zanardo (eds.), North-Holland, 1989, 117-138.

[00004] [5] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.

[00005] [6] A. S. Kechris and A. Louveau, Descriptive Set Theory and the Structure of Sets of Uniqueness, London Math. Soc. Lecture Note Ser. 128, Cambridge Univ. Press, 1987. | Zbl 0642.42014

[00006] [7] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. | Zbl 0633.03043

[00007] [8] A. Louveau, σ-idéaux engendrés par des ensembles fermés et théorèmes d'approximation, Trans. Amer. Math. Soc. 257 (1980), 143-169. | Zbl 0427.03039

[00008] [9] Y. N. Moschovakis, Descriptive Set Theory, North-Holland, Amsterdam, 1980.

[00009] [10] S. Solecki, Covering analytic sets by families of closed sets, J. Symbolic Logic 59 (1994), 1022-1031. | Zbl 0808.03031

[00010] [11] C. Uzcátegui, The covering property for σ-ideals of compact sets, Fund. Math. 140 (1992), 119-146. | Zbl 0799.04008

[00011] [12] C. Uzcátegui, Smooth sets for a Borel equivalence relation, Trans. Amer. Math. Soc. 347 (1995), 2025-2039. | Zbl 0826.03020

[00012] [13] B. Weiss, Measurable dynamics, in: Contemp. Math. 26, Amer. Math. Soc., 1984, 395-421. | Zbl 0599.28023