We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.
@article{bwmeta1.element.bwnjournal-article-fmv150i3p211bwm, author = {J\"org Brendle and Tim La Berge}, title = {Forcing tightness in products of fans}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {211-226}, zbl = {0867.54002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p211bwm} }
Brendle, Jörg; La Berge, Tim. Forcing tightness in products of fans. Fundamenta Mathematicae, Tome 149 (1996) pp. 211-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p211bwm/
[00000] [Br] J. Brendle, notes.
[00001] [FS] W. G. Fleissner and S. Shelah, Incompactness at singulars, Topology Appl. 31 (1989), 101-107. | Zbl 0659.54016
[00002] [G] G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 477-482.
[00003] [H] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. | Zbl 40.0446.02
[00004] [J] H. Judah, private communication.
[00005] [K] P. Koszmider, Kurepa trees and topological non-reflection, preprint. | Zbl 1076.54003
[00006] [Ku] K. Kunen, Inaccessibility properties of cardinals, Ph.D. dissertation, Stanford, 1968.
[00007] [LL] T. LaBerge and A. Landver, Tightness in products of fans and psuedo-fans, Topology Appl. 65 (1995), 237-255. | Zbl 0867.54001
[00008] [R] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126. | Zbl 67.0990.01
[00009] [T] S. Todorčević, My new fan, preprint.