Forcing tightness in products of fans
Brendle, Jörg ; La Berge, Tim
Fundamenta Mathematicae, Tome 149 (1996), p. 211-226 / Harvested from The Polish Digital Mathematics Library

We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212172
@article{bwmeta1.element.bwnjournal-article-fmv150i3p211bwm,
     author = {J\"org Brendle and Tim La Berge},
     title = {Forcing tightness in products of fans},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {211-226},
     zbl = {0867.54002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p211bwm}
}
Brendle, Jörg; La Berge, Tim. Forcing tightness in products of fans. Fundamenta Mathematicae, Tome 149 (1996) pp. 211-226. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i3p211bwm/

[00000] [Br] J. Brendle, notes.

[00001] [FS] W. G. Fleissner and S. Shelah, Incompactness at singulars, Topology Appl. 31 (1989), 101-107. | Zbl 0659.54016

[00002] [G] G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 477-482.

[00003] [H] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. | Zbl 40.0446.02

[00004] [J] H. Judah, private communication.

[00005] [K] P. Koszmider, Kurepa trees and topological non-reflection, preprint. | Zbl 1076.54003

[00006] [Ku] K. Kunen, Inaccessibility properties of cardinals, Ph.D. dissertation, Stanford, 1968.

[00007] [LL] T. LaBerge and A. Landver, Tightness in products of fans and psuedo-fans, Topology Appl. 65 (1995), 237-255. | Zbl 0867.54001

[00008] [R] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété C, Proc. Cambridge Philos. Soc. 37 (1941), 109-126. | Zbl 67.0990.01

[00009] [T] S. Todorčević, My new fan, preprint.