On homogeneous totally disconnected 1-dimensional spaces
Kawamura, Kazuhiro ; Oversteegen, Lex ; Tymchatyn, E.
Fundamenta Mathematicae, Tome 149 (1996), p. 97-112 / Harvested from The Polish Digital Mathematics Library

The Cantor set and the set of irrational numbers are examples of 0-dimensional, totally disconnected, homogeneous spaces which admit elegant characterizations and which play a crucial role in analysis and dynamical systems. In this paper we will start the study of 1-dimensional, totally disconnected, homogeneous spaces. We will provide a characterization of such spaces and use it to show that many examples of such spaces which exist in the literature in various fields are all homeomorphic. In particular, we will show that the set of endpoints of the universal separable ℝ-tree, the set of endpoints of the Julia set of the exponential map, the set of points in Hilbert space all of whose coordinates are irrational and the set of endpoints of the Lelek fan are all homeomorphic. Moreover, we show that these spaces satisfy a topological scaling property: all non-empty open subsets and all complements of σ-compact subsets are homeomorphic.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212170
@article{bwmeta1.element.bwnjournal-article-fmv150i2p97bwm,
     author = {Kazuhiro Kawamura and Lex Oversteegen and E. Tymchatyn},
     title = {On homogeneous totally disconnected 1-dimensional spaces},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {97-112},
     zbl = {0861.54028},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p97bwm}
}
Kawamura, Kazuhiro; Oversteegen, Lex; Tymchatyn, E. On homogeneous totally disconnected 1-dimensional spaces. Fundamenta Mathematicae, Tome 149 (1996) pp. 97-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p97bwm/

[00000] [1] J. M. Aarts and L. G. Oversteegen, The geometry of Julia sets in the exponential family, Trans. Amer. Math. Soc. 338 (1993), 897-918. | Zbl 0809.54034

[00001] [2] P. Alexandroff und P. Urysohn, Über nulldimensionale Punktmengen, Math. Ann. 98 (1928), 89-106. | Zbl 53.0559.01

[00002] [3] R. Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972), 189-194. | Zbl 0227.54020

[00003] [4] L. E. J. Brouwer, On the structure of perfect sets of points, Proc. Acad. Amsterdam 12 (1910), 785-794.

[00004] [5] W. T. Bula and L. G. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529-534. | Zbl 0679.54034

[00005] [6] W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15 (1989), 27-34. | Zbl 0675.54034

[00006] [7] F. van Engelen, Homogeneous Borel sets of ambiguous class two, Trans. Amer. Math. Soc. 290 (1985), 1-39. | Zbl 0582.54023

[00007] [8] F. van Engelen, Homogeneous zero-dimensional absolute Borel sets, PhD thesis, Universiteit van Amsterdam, Amsterdam, 1985. | Zbl 0599.54044

[00008] [9] P. Erdős, The dimension of rational points in Hilbert space, Ann. of Math. 41 (1940), 734-736. | Zbl 0025.18701

[00009] [10] K. Kawamura, L. Oversteegen and E. D. Tymchatyn, On the set of endpoints of the Lelek fan, in preparation.

[00010] [11] B. Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension n > 1 arbitraire, Mat. Sb. 19 (1946), 9-18 (in: Russian; French summary). | Zbl 0061.40104

[00011] [12] K. Kuratowski et B. Knaster, Sur les ensembles connexes, Fund. Math. 2 (1921), 206-255.

[00012] [13] A. Lelek, On plane dendroids and their endpoints in the classical sense, Fund. Math. 49 (1961), 301-319. | Zbl 0099.17701

[00013] [14] J. C. Mayer, An explosion point for the set of endpoints of the Julia set of λ exp(z), Ergodic Theory Dynam. Systems 10 (1990), 177-183.

[00014] [15] J. C. Mayer, L. Mohler, L. G. Oversteegen and E. D. Tymchatyn, Characterization of separable metric ℝ-trees, Proc. Amer. Math. Soc. 115 (1992), 257-264. | Zbl 0754.54026

[00015] [16] J. C. Mayer, J. Nikiel and L. G. Oversteegen, On universal ℝ-trees, Trans. Amer. Math. Soc. 334 (1992), 411-432. | Zbl 0787.54036

[00016] [17] J. C. Mayer and L. G. Oversteegen, A topological characterization of ℝ-trees, Trans. Amer. Math. Soc. 320 (1990), 395-415. | Zbl 0729.54008

[00017] [18] S. Mazurkiewicz, Sur les problèmes χ et λ de Urysohn, Fund. Math. 10 (1927), 311-319.

[00018] [19] J. van Mill, Characterization of some zero-dimensional separable metric spaces, Trans. Amer. Math. Soc. 264 (1981), 205-215. | Zbl 0493.54018

[00019] [20] T. Nishiura and E. D. Tymchatyn, Hereditarily locally connected spaces, Houston J. Math. 2 (1976), 581-599. | Zbl 0341.54043

[00020] [21] L. G. Oversteegen and E. D. Tymchatyn, On the dimension of some totally disconnected sets, Proc. Amer. Math. Soc., to appear. | Zbl 0817.54028

[00021] [22] J. H. Roberts, The rational points in Hilbert space, Duke Math. J. 23 (1956), 488-491.

[00022] [23] L. R. Rubin, Totally disconnected spaces and infinite cohomological dimension, Topology Proc. 7 (1982), 157-166. | Zbl 0523.55003

[00023] [24] L. R. Rubin, R. M. Schori and J. J. Walsh, New dimension-theory techniques for constructing infinite dimensional examples, Gen. Topology Appl. 10 (1979), 93-102. | Zbl 0413.54042

[00024] [25] W. Sierpiński, Sur les ensembles connexes et non connexes, Fund. Math. 2 (1921), 81-95. | Zbl 48.0208.02

[00025] [26] W. Sierpiński, Sur une propriété des ensembles dénombrables denses en soi, Fund. Math. 1 (1920), 11-16. | Zbl 47.0175.03