Let LX be the space of free loops on a simply connected manifold X. When the real cohomology of X is a tensor product of algebras generated by a single element, we determine the algebra structure of the real cohomology of LX by using the cyclic bar complex of the de Rham complex Ω(X) of X. In consequence, the algebra generators of the real cohomology of LX can be represented by differential forms on LX through Chen’s iterated integral map. Let be the circle group. The -equivariant cohomology of LX is also studied in terms of the cyclic homology of Ω(X).
@article{bwmeta1.element.bwnjournal-article-fmv150i2p173bwm, author = {Katsuhiko Kuribayashi}, title = {On the real cohomology of spaces of free loops on manifolds}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {173-188}, zbl = {0859.55011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p173bwm} }
Kuribayashi, Katsuhiko. On the real cohomology of spaces of free loops on manifolds. Fundamenta Mathematicae, Tome 149 (1996) pp. 173-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p173bwm/
[00000] [1] W. Andrzejewski and A. Tralle, Cohomology of some graded differential algebras, Fund. Math. 145 (1994), 181-204. | Zbl 0847.55007
[00001] [2] M. F. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28. | Zbl 0521.58025
[00002] [3] E. J. Beggs, The de Rham complex on infinite dimensional manifolds, Quart. J. Math. 38 (1987), 131-154. | Zbl 0636.58004
[00003] [4] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Grad. Texts in Math. 82, Springer, New York, 1982. | Zbl 0496.55001
[00004] [5] D. Burghelea and M. Vigué-Poirrier, Cyclic homology of commutative algebras I, in: Lecture Notes in Math. 1318, Springer, 1988, 51-72.
[00005] [6] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, 1956.
[00006] [7] K. T. Chen, Iterated integrals of differential forms and loop space homology, Ann. of Math. 97 (1973), 217-246. | Zbl 0227.58003
[00007] [8] E. Getzler and J. D. S. Jones, -algebras and cyclic bar complex, Illinois J. Math. 34 (1990), 256-283. | Zbl 0701.55009
[00008] [9] E. Getzler, J. D. S. Jones and S. Petrack, Differential form on loop spaces and the cyclic bar complex, Topology 30 (1991), 339-371. | Zbl 0729.58004
[00009] [10] T. Goodwillie, Cyclic homology, derivations, and the free loop space, Topology 24 (1985), 187-215. | Zbl 0569.16021
[00010] [11] C. Hood and J. D. S. Jones, Some algebraic properties of cyclic homology groups, K-Theory 1 (1987), 361-384. | Zbl 0636.18005
[00011] [12] J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423. | Zbl 0644.55005
[00012] [13] D. Kraines and C. Schochet, Differentials in the Eilenberg-Moore spectral sequence, J. Pure Appl. Algebra 2 (1972), 131-148. | Zbl 0237.55016
[00013] [14] KK. Kuribayashi, On the mod p cohomology of spaces of free loops on the Grassmann and Stiefel manifolds, J. Math. Soc. Japan 43 (1991), 331-346. | Zbl 0729.55010
[00014] [15] K. Kuribayashi and T. Yamaguchi, On additive K-theory with the Loday-Quillen *-product, preprint. | Zbl 0968.19001
[00015] [16] J. L. Loday and D. G. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565-591. | Zbl 0565.17006
[00016] [17] V. Mathai and D. G. Quillen, Superconnections, equivariant differential forms and the Thom class, Topology 25 (1986), 85-110. | Zbl 0592.55015
[00017] [18] MJ. P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146.
[00018] [19] J. McCleary, User's Guide to Spectral Sequences, Publish or Perish, Wilmington, 1985. | Zbl 0577.55001
[00019] [20] L. Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58-93. | Zbl 0177.51402
[00020] [21] L. Smith, On the characteristic zero cohomology of the free loop space, Amer. J. Math. 103 (1981), 887-910. | Zbl 0475.55004
[00021] [22] M. Vigué-Poirrier, Réalisation de morphismes donnés en cohomologie et site spectrale d'Eilenberg-Moore, Trans. Amer. Math. Soc. 265 (1981), 447-484. | Zbl 0474.55009
[00022] [23] M. Vigué-Poirrier, Sur l'algèbre de cohomologie cyclique d'un espace 1-connexe, Illinois J. Math. 32 (1988), 40-52.
[00023] [24] M. Vigué-Poirrier and D. Burghelea, A model for cyclic homology and algebraic K-theory of 1-connected topological spaces, J. Differential Geom. 22 (1985), 243-253. | Zbl 0595.55009