We prove that, under CH, for each Boolean algebra A of cardinality at most the continuum there is an embedding of A into P(ω)/fin such that each automorphism of A can be extended to an automorphism of P(ω)/fin. We also describe a model of ZFC + MA(σ-linked) in which the continuum is arbitrarily large and the above assertion holds true.
@article{bwmeta1.element.bwnjournal-article-fmv150i2p127bwm, author = {Magdalena Grzech}, title = {On automorphisms of Boolean algebras embedded in P ($\omega$)/fin}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {127-147}, zbl = {0859.03024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p127bwm} }
Grzech, Magdalena. On automorphisms of Boolean algebras embedded in P (ω)/fin. Fundamenta Mathematicae, Tome 149 (1996) pp. 127-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p127bwm/
[00000] [1] J. Baumgartner, R. Frankiewicz and P. Zbierski, Embeddings of Boolean algebras in P(ω)/fin, Fund. Math. 136 (1990), 187-192. | Zbl 0718.03039
[00001] [2] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces II, Fund. Math. 126 (1985), 63-67. | Zbl 0579.03037
[00002] [3] R. Frankiewicz and P. Zbierski, Partitioner-representable algebras, Proc. Amer. Math. Soc. 103 (1988), 926-928. | Zbl 0655.03036
[00003] [4] R. Frankiewicz and P. Zbierski, On a theorem of Baumgartner and Weese, Fund. Math. 139 (1991), 167-175. | Zbl 0766.03028
[00004] [5] R. Frankiewicz and P. Zbierski, Hausdorff Gaps and Limits, North-Holland, 1994. | Zbl 0821.54001
[00005] [6] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland, 1980.
[00006] [7] R. Sikorski, Boolean Algebras, Springer, Berlin, 1969.