Exactly two-to-one maps from continua onto arc-continua
Dębski, Wojciech ; Heath, J. ; Mioduszewski, J.
Fundamenta Mathematicae, Tome 149 (1996), p. 113-126 / Harvested from The Polish Digital Mathematics Library

Continuing studies on 2-to-1 maps onto indecomposable continua having only arcs as proper non-degenerate subcontinua - called here arc-continua - we drop the hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction if Y is orientable, and that it is a local homeomorphism if Y is not orientable.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212165
@article{bwmeta1.element.bwnjournal-article-fmv150i2p113bwm,
     author = {Wojciech D\k ebski and J. Heath and J. Mioduszewski},
     title = {Exactly two-to-one maps from continua onto arc-continua},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {113-126},
     zbl = {0856.54036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p113bwm}
}
Dębski, Wojciech; Heath, J.; Mioduszewski, J. Exactly two-to-one maps from continua onto arc-continua. Fundamenta Mathematicae, Tome 149 (1996) pp. 113-126. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i2p113bwm/

[00000] [1] J. M. Aarts, The structure of orbits in dynamical systems, Fund. Math. 129 (1988), 39-58. | Zbl 0664.54026

[00001] [2] J. M. Aarts and M. Martens, Flows on one-dimensional spaces, Fund. Math. 131 (1988), 53-67.

[00002] [3] J. M. Aarts and L. G. Oversteegen, Flowbox manifolds, Trans. Amer. Math. Soc. 327 (1991), 449-463. | Zbl 0768.54027

[00003] [4] W. Dębski, Two-to-one maps on solenoids and Knaster continua, Fund. Math. 141 (1992), 277-285. | Zbl 0822.54028

[00004] [5] W. Dębski, J. Heath and J. Mioduszewski, Exactly two-to-one maps from continua onto some tree-like continua, Fund. Math., 269-276. | Zbl 0807.54015

[00005] [6] W. H. Gottschalk, On k-to-1 transformations, Bull. Amer. Math. Soc. 53 (1947), 168-169. | Zbl 0040.25402

[00006] [7] J. Grispolakis and E. D. Tymchatyn, Continua which are images of weakly confluent mappings only, (I), Houston J. Math. 5 (1979), 483-501. | Zbl 0412.54039

[00007] [8] O. G. Harrold, Exactly (k,1) transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823-834. | Zbl 0024.19101

[00008] [9] J. Heath, 2-to-1 maps with hereditarily indecomposable images, Proc. Amer. Math. Soc. 113 (1991), 839-846. | Zbl 0738.54012

[00009] [10] J. Heath, There is no exactly k-to-1 function from any continuum onto [0,1], or any dendrite, with only finitely many discontinuities, Trans. Amer. Math. Soc. 306 (1988), 293-305. | Zbl 0649.54006

[00010] [11] J. Hocking and G. Young, Topology, Addison-Wesley, 1961.

[00011] [12] H. B. Keynes and M. Sears, Modeling expansion in real flows, Pacific J. Math. 85 (1979), 111-124.

[00012] [13] J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961). | Zbl 0104.17304

[00013] [14] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly (n,1) images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. | Zbl 0503.54018