Locally constant functions
Hart, Joan ; Kunen, Kenneth
Fundamenta Mathematicae, Tome 149 (1996), p. 67-96 / Harvested from The Polish Digital Mathematics Library

Let X be a compact Hausdorff space and M a metric space. E0(X,M) is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which E0(X,M) is all of C(X,M). These include βℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of E0(X,M) as a normed linear space. We also build three first countable Eberlein compact spaces, F,G,H, with various E0 properties. For all metric M, E0(F,M) contains only the constant functions, and E0(G,M)=C(G,M). If M is the Hilbert cube or any infinite-dimensional Banach space, then E0(H,M)C(H,M), but E0(H,M)=C(H,M) whenever Mn for some finite n.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212164
@article{bwmeta1.element.bwnjournal-article-fmv150i1p67bwm,
     author = {Joan Hart and Kenneth Kunen},
     title = {Locally constant functions},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {67-96},
     zbl = {0855.46019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p67bwm}
}
Hart, Joan; Kunen, Kenneth. Locally constant functions. Fundamenta Mathematicae, Tome 149 (1996) pp. 67-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p67bwm/

[00000] [1] A. V. Arkhangel'skiĭ and V. V. Fedorchuk, General Topology I, Basic Concepts and Constructions, Dimension Theory, Springer, 1990.

[00001] [2] A. Bella, A. Hager, J. Martinez, S. Woodward and H. Zhou, Specker spaces and their absolutes, I, preprint. | Zbl 0856.54039

[00002] [3] A. Bella, J. Martinez and S. Woodward, Algebras and spaces of dense constancies, preprint. | Zbl 1079.54506

[00003] [4] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. | Zbl 0374.46011

[00004] [5] A. Bernard, Une fonction non Lipschitzienne peut-elle opérer sur un espace de Banach de fonctions non trivial?, J. Funct. Anal. 122 (1994), 451-477.

[00005] [6] A. Bernard, A strong superdensity property for some subspaces of C(X), prépublication de l'Institut Fourier, Laboratoire de Mathématiques, 1994.

[00006] [7] A. Bernard and S. J. Sidney, Banach like normed linear spaces, preprint, 1994.

[00007] [8] M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277. | Zbl 1068.28502

[00008] [9] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1963.

[00009] [10] T. Jech, Set Theory, Academic Press, 1978.

[00010] [11] K. Kunen, Set Theory, North-Holland, 1980.

[00011] [12] J. Martinez and S. Woodward, Specker spaces and their absolutes, II, Algebra Universalis, to appear. | Zbl 0886.54031

[00012] [13] J. van Mill, A homogeneous Eberlein compact space which is not metrizable, Pacific J. Math. 101 (1982), 141-146. | Zbl 0495.54020

[00013] [14] M. E. Rudin and W. Rudin, Continuous functions that are locally constant on dense sets, J. Funct. Anal. 133 (1995), 120-137.

[00014] [15] S. J. Sidney, Some very dense subspaces of C(X), preprint, 1994.

[00015] [6] R. Sikorski, Boolean Algebras, Springer, 1964.