Let X be a compact Hausdorff space and M a metric space. is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which is all of C(X,M). These include βℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of as a normed linear space. We also build three first countable Eberlein compact spaces, F,G,H, with various properties. For all metric M, contains only the constant functions, and . If M is the Hilbert cube or any infinite-dimensional Banach space, then , but whenever for some finite n.
@article{bwmeta1.element.bwnjournal-article-fmv150i1p67bwm, author = {Joan Hart and Kenneth Kunen}, title = {Locally constant functions}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {67-96}, zbl = {0855.46019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p67bwm} }
Hart, Joan; Kunen, Kenneth. Locally constant functions. Fundamenta Mathematicae, Tome 149 (1996) pp. 67-96. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p67bwm/
[00000] [1] A. V. Arkhangel'skiĭ and V. V. Fedorchuk, General Topology I, Basic Concepts and Constructions, Dimension Theory, Springer, 1990.
[00001] [2] A. Bella, A. Hager, J. Martinez, S. Woodward and H. Zhou, Specker spaces and their absolutes, I, preprint. | Zbl 0856.54039
[00002] [3] A. Bella, J. Martinez and S. Woodward, Algebras and spaces of dense constancies, preprint. | Zbl 1079.54506
[00003] [4] Y. Benyamini, M. E. Rudin and M. Wage, Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. | Zbl 0374.46011
[00004] [5] A. Bernard, Une fonction non Lipschitzienne peut-elle opérer sur un espace de Banach de fonctions non trivial?, J. Funct. Anal. 122 (1994), 451-477.
[00005] [6] A. Bernard, A strong superdensity property for some subspaces of C(X), prépublication de l'Institut Fourier, Laboratoire de Mathématiques, 1994.
[00006] [7] A. Bernard and S. J. Sidney, Banach like normed linear spaces, preprint, 1994.
[00007] [8] M. Džamonja and K. Kunen, Properties of the class of measure separable compact spaces, Fund. Math. 147 (1995), 261-277. | Zbl 1068.28502
[00008] [9] P. R. Halmos, Lectures on Boolean Algebras, Van Nostrand, 1963.
[00009] [10] T. Jech, Set Theory, Academic Press, 1978.
[00010] [11] K. Kunen, Set Theory, North-Holland, 1980.
[00011] [12] J. Martinez and S. Woodward, Specker spaces and their absolutes, II, Algebra Universalis, to appear. | Zbl 0886.54031
[00012] [13] J. van Mill, A homogeneous Eberlein compact space which is not metrizable, Pacific J. Math. 101 (1982), 141-146. | Zbl 0495.54020
[00013] [14] M. E. Rudin and W. Rudin, Continuous functions that are locally constant on dense sets, J. Funct. Anal. 133 (1995), 120-137.
[00014] [15] S. J. Sidney, Some very dense subspaces of C(X), preprint, 1994.
[00015] [6] R. Sikorski, Boolean Algebras, Springer, 1964.