Analytic gaps
Todorčević, Stevo
Fundamenta Mathematicae, Tome 149 (1996), p. 55-66 / Harvested from The Polish Digital Mathematics Library

We investigate when two orthogonal families of sets of integers can be separated if one of them is analytic.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212163
@article{bwmeta1.element.bwnjournal-article-fmv150i1p55bwm,
     author = {Stevo Todor\v cevi\'c},
     title = {Analytic gaps},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {55-66},
     zbl = {0851.04002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p55bwm}
}
Todorčević, Stevo. Analytic gaps. Fundamenta Mathematicae, Tome 149 (1996) pp. 55-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p55bwm/

[00000] [0] A. Blass, Near coherence of filters II: Applications to operator ideals, the Stone-Čech remainder of a half-line, order ideal of sequences, and slenderness of groups, Trans. Amer. Math. Soc. 300 (1987), 557-581. | Zbl 0647.03043

[00001] [1] J. Bourgain, Some remarks on compact sets of first Baire class, Bull. Soc. Math. Belg. 30 (1978), 3-10. | Zbl 0414.54011

[00002] [2] J. Bourgain, D. H. Fremlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, Amer. J. Math. 100 (1978), 845-886. | Zbl 0413.54016

[00003] [3] H. G. Dales and W. H. Woodin, An Introduction to Independence for Analysts, Cambridge University Press, 1978.

[00004] [4] P. du Bois-Reymond, Eine neue Theorie der Convergenz und Divergenz von Reihen mit positiven Gliedern, J. Reine Angew. Math. 76 (1873), 61-91.

[00005] [5] Q. Feng, Homogeneity for open partitions of reals, Trans. Amer. Math. Soc. 339 (1993), 659-684. | Zbl 0795.03065

[00006] [6] D. H. Fremlin, The partially ordered sets of measure theory and Tukey's ordering, Note Mat. 11 (1991), 177-214. | Zbl 0799.06004

[00007] [7] D. H. Fremlin and S. Shelah, On partitions of the real line, Israel J. Math. 32 (1979), 299-304. | Zbl 0413.04002

[00008] [8] D. C. Gillespie and W. A. Hurwitz, On sequences of continuous functions having continuous limits, Trans. Amer. Math. Soc. 32 (1930), 527-543. | Zbl 56.0212.03

[00009] [9] J. Hadamard, Sur les caractères de convergence des séries à termes positifs et sur les fonctions indéfiniment croissantes, Acta Math. 18 (1894), 319-336. | Zbl 25.0375.02

[00010] [10] F. Hausdorff, Die Graduierung nach dem Endverlauf, Abh. Königl. Sächs. Gesell. Wiss. Math.-Phys. Kl. 31 (1909), 296-334. | Zbl 40.0446.02

[00011] [11] F. Hausdorff, Summen von 1 Mengen, Fund. Math. 26 (1936), 241-255.

[00012] [12] W. Hurewicz, Relativ Perfekte Teile von Punktmengen und Mengen (A), Fund. Math. 12 (1928), 78-109.

[00013] [13] A. S. Kechris, Classical Descriptive Set Theory, Springer, 1995.

[00014] [14] A. S. Kechris, A. Louveau and W. H. Woodin, The structure of σ-ideals of compact sets, Trans. Amer. Math. Soc. 301 (1987), 263-288. | Zbl 0633.03043

[00015] [15] A. Krawczyk, Rosenthal compactum and analytic sets, Proc. Amer. Math. Soc. 115 (1992), 1095-1100. | Zbl 0768.04003

[00016] [16] K. Kunen, Some comments on box products, in: Infinite and Finite Sets, Keszthely 1973, Colloq. Math. Soc. János Bolyai 10, North-Holland, Amsterdam, 1975, 1011-1016.

[00017] [17] K. Kunen, (κ,λ*) gaps under MA, note of August 1976.

[00018] [18] K. Kunen, An Introduction to Independence Proofs, North-Holland, 1980.

[00019] [19] C. Laflamme, Bounding and dominating number of families of functions on ω, Math. Logic Quart. 40 (1994), 207-223. | Zbl 0835.03015

[00020] [20] N. Luzin, On parts of the natural series, Izv. Akad. Nauk SSSR Ser. Mat. 11 (1947), 714-722 (in Russian).

[00021] [21] R. Pol, On pointwise and weak topology in function spaces, preprint, Uniw. Warszawski, 1984.

[00022] [22] R. Pol, Note on pointwise convergence of sequences of analytic sets, Mathematika 36 (1989), 290-300. | Zbl 0719.54047

[00023] [23] H. P. Rosenthal, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831. | Zbl 0391.46016

[00024] [24] S. Shelah, Cardinal Arithmetic, Oxford University Press, 1995.

[00025] [25] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53-61. | Zbl 0169.15303

[00026] [26] S. Todorčević, Partition Problems in Topology, Amer. Math. Soc., Providence, 1989. | Zbl 0659.54001

[00027] [27] Z. Zalcwasser, Sur une propriété du champ des fonctions continues, Studia Math. 2 (1930), 63-67. | Zbl 56.0932.04