For a separable metric space X, we consider possibilities for the sequence where . In Section 1, a general method for producing examples is given which can be used to realize many of the possible sequences. For example, there is such that , , for n >1, such that , and Z such that S(Z) = 4, 4, 6, 6, 7, 8, 9,.... In Section 2, a subset X of is shown to exist which satisfies and .
@article{bwmeta1.element.bwnjournal-article-fmv150i1p43bwm, author = {John Kulesza}, title = {The dimension of X^n where X is a separable metric space}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {43-54}, zbl = {0870.54034}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p43bwm} }
Kulesza, John. The dimension of X^n where X is a separable metric space. Fundamenta Mathematicae, Tome 149 (1996) pp. 43-54. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p43bwm/
[00000] [AK] R. D. Anderson and J. E. Keisler, An example in dimension theory, Proc. Amer. Math. Soc. 18 (1967), 709-713. | Zbl 0153.24602
[00001] [DRS] A. Dranishnikov, D. Repovš and E. Ščepin, On intersections of compacta of complementary dimensions in Euclidean space, Topology Appl. 38 (1991), 237-253. | Zbl 0719.54015
[00002] [E] R. Engelking, Dimension Theory, North-Holland, Amsterdam, 1978.
[00003] [H] Y. Hattori, Dimension and products of topological groups, Yokohama Math. J. 42 (1994), 31-40. | Zbl 0816.54025
[00004] [K] J. Krasinkiewicz, Imbeddings into and dimension of products, Fund. Math. 133 (1989), 247-253. | Zbl 0715.54027
[00005] [Ku1] J. Kulesza, Dimension and infinite products in separable metric spaces, Proc. Amer. Math. Soc. 110 (1990), 557-563. | Zbl 0724.54032
[00006] [Ku2] J. Kulesza, A counterexample to the extension of a product theorem in dimension theory to the noncompact case, preprint.
[00007] [L] J. Luukkainen, Embeddings of n-dimensional locally compact metric spaces to 2n-manifolds, Math. Scand. 68 (1991), 193-209. | Zbl 0723.54013
[00008] [Sp] S. Spież, The structure of compacta satisfying dim(X × X) < 2 dim X, Fund. Math. 135 (1990), 127-145.