Ultrametric spaces bi-Lipschitz embeddable in n
Luosto, Kerkko
Fundamenta Mathematicae, Tome 149 (1996), p. 25-42 / Harvested from The Polish Digital Mathematics Library

It is proved that if an ultrametric space can be bi-Lipschitz embedded in n, then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in n.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212161
@article{bwmeta1.element.bwnjournal-article-fmv150i1p25bwm,
     author = {Kerkko Luosto},
     title = {Ultrametric spaces bi-Lipschitz embeddable in $$\mathbb{R}$^n$
            },
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {25-42},
     zbl = {0862.54024},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p25bwm}
}
Luosto, Kerkko. Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$
            . Fundamenta Mathematicae, Tome 149 (1996) pp. 25-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p25bwm/

[00000] [ABBW] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. | Zbl 0639.51018

[00001] [A] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans n, C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. | Zbl 0409.54020

[00002] [LM-L] J. Luukkainen and H. Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 181-193. | Zbl 0807.54025

[00003] [M-LW] H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures, Proc. Amer. Math. Soc. 123 (1995), 2579-2584. | Zbl 0872.54020

[00004] [S] S. Semmes, On the nonexistence of bilipschitz parameterizations and geometric problems about A weights, Rev. Mat. Iberoamericana, to appear. | Zbl 0858.46017