It is proved that if an ultrametric space can be bi-Lipschitz embedded in , then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in .
@article{bwmeta1.element.bwnjournal-article-fmv150i1p25bwm, author = {Kerkko Luosto}, title = {Ultrametric spaces bi-Lipschitz embeddable in $$\mathbb{R}$^n$ }, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {25-42}, zbl = {0862.54024}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p25bwm} }
Luosto, Kerkko. Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$ . Fundamenta Mathematicae, Tome 149 (1996) pp. 25-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p25bwm/
[00000] [ABBW] M. Aschbacher, P. Baldi, E. B. Baum and R. M. Wilson, Embeddings of ultrametric spaces in finite dimensional structures, SIAM J. Algebraic Discrete Methods 8 (1987), 564-577. | Zbl 0639.51018
[00001] [A] P. Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans , C. R. Acad. Sci. Paris Sér. A 288 (1979), 731-734. | Zbl 0409.54020
[00002] [LM-L] J. Luukkainen and H. Movahedi-Lankarani, Minimal bi-Lipschitz embedding dimension of ultrametric spaces, Fund. Math. 144 (1994), 181-193. | Zbl 0807.54025
[00003] [M-LW] H. Movahedi-Lankarani and R. Wells, Ultrametrics and geometric measures, Proc. Amer. Math. Soc. 123 (1995), 2579-2584. | Zbl 0872.54020
[00004] [S] S. Semmes, On the nonexistence of bilipschitz parameterizations and geometric problems about weights, Rev. Mat. Iberoamericana, to appear. | Zbl 0858.46017