Hyperspaces of two-dimensional continua
Levin, Michael ; Sternfeld, Yaki
Fundamenta Mathematicae, Tome 149 (1996), p. 17-24 / Harvested from The Polish Digital Mathematics Library

Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum Tn with dimC(Tn)n. This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212159
@article{bwmeta1.element.bwnjournal-article-fmv150i1p17bwm,
     author = {Michael Levin and Yaki Sternfeld},
     title = {Hyperspaces of two-dimensional continua},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {17-24},
     zbl = {0858.54006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p17bwm}
}
Levin, Michael; Sternfeld, Yaki. Hyperspaces of two-dimensional continua. Fundamenta Mathematicae, Tome 149 (1996) pp. 17-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p17bwm/

[00000] [1] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273. | Zbl 0043.16901

[00001] [2] A. Lelek, On mappings that change dimension of spheres, Colloq. Math. 10 (1963), 45-48. | Zbl 0113.16601

[00002] [3] M. Levin, Hyperspaces and open monotone maps of hereditarily indecomposable continua, Proc. Amer. Math. Soc., to appear. | Zbl 0862.54011

[00003] [4] M. Levin and Y. Sternfeld, Mappings which are stable with respect to the property dim f(X)≥ k, Topology Appl. 52 (1993), 241-265.

[00004] [5] M. Levin and Y. Sternfeld, The space of subcontinua of a 2-dimensional continuum is infinite dimensional, Proc. Amer. Math. Soc., to appear. | Zbl 0891.54004

[00005] [6] S. B. Nadler Jr., Hyperspaces of Sets, Dekker, 1978.

[00006] [7] Y. Sternfeld, Mappings in dendrites and dimension, Houston J. Math. 19 (1993), 483-497. | Zbl 0819.54024