Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum with . This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.
@article{bwmeta1.element.bwnjournal-article-fmv150i1p17bwm, author = {Michael Levin and Yaki Sternfeld}, title = {Hyperspaces of two-dimensional continua}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {17-24}, zbl = {0858.54006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p17bwm} }
Levin, Michael; Sternfeld, Yaki. Hyperspaces of two-dimensional continua. Fundamenta Mathematicae, Tome 149 (1996) pp. 17-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv150i1p17bwm/
[00000] [1] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267-273. | Zbl 0043.16901
[00001] [2] A. Lelek, On mappings that change dimension of spheres, Colloq. Math. 10 (1963), 45-48. | Zbl 0113.16601
[00002] [3] M. Levin, Hyperspaces and open monotone maps of hereditarily indecomposable continua, Proc. Amer. Math. Soc., to appear. | Zbl 0862.54011
[00003] [4] M. Levin and Y. Sternfeld, Mappings which are stable with respect to the property dim f(X)≥ k, Topology Appl. 52 (1993), 241-265.
[00004] [5] M. Levin and Y. Sternfeld, The space of subcontinua of a 2-dimensional continuum is infinite dimensional, Proc. Amer. Math. Soc., to appear. | Zbl 0891.54004
[00005] [6] S. B. Nadler Jr., Hyperspaces of Sets, Dekker, 1978.
[00006] [7] Y. Sternfeld, Mappings in dendrites and dimension, Houston J. Math. 19 (1993), 483-497. | Zbl 0819.54024