The Arkhangel'skiĭ–Tall problem under Martin’s Axiom
Gruenhage, Gary ; Koszmider, Piotr
Fundamenta Mathematicae, Tome 149 (1996), p. 275-285 / Harvested from The Polish Digital Mathematics Library

We show that MAσ-centered(ω1) implies that normal locally compact metacompact spaces are paracompact, and that MA(ω1) implies normal locally compact metalindelöf spaces are paracompact. The latter result answers a question of S. Watson. The first result implies that there is a model of set theory in which all normal locally compact metacompact spaces are paracompact, yet there is a normal locally compact metalindelöf space which is not paracompact.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:212124
@article{bwmeta1.element.bwnjournal-article-fmv149i3p275bwm,
     author = {Gary Gruenhage and Piotr Koszmider},
     title = {The Arkhangel'ski\u\i --Tall problem under Martin's Axiom},
     journal = {Fundamenta Mathematicae},
     volume = {149},
     year = {1996},
     pages = {275-285},
     zbl = {0855.54006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p275bwm}
}
Gruenhage, Gary; Koszmider, Piotr. The Arkhangel'skiĭ–Tall problem under Martin’s Axiom. Fundamenta Mathematicae, Tome 149 (1996) pp. 275-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p275bwm/

[00000] [A] A. V. Arkhangel'skiĭ, The property of paracompactness in the class of perfectly normal locally bicompact spaces, Soviet Math. Dokl. 12 (1971), 1253-1257.

[00001] [AP] A. V. Arkhangel'skiĭ and V. I. Ponomarev, General Topology in Problems and Exercises, Nauka, Moscow, 1974 (in Russian).

[00002] [B1] Z. Balogh, On collectionwise normality of locally compact spaces, Trans. Amer. Math. Soc. 323 (1991), 389-411. | Zbl 0736.54017

[00003] [B2] Z. Balogh, Paracompactness in locally Lindelöf spaces, Canad. J. Math. 38 (1986), 719-727. | Zbl 0599.54027

[00004] [E] R. Engelking, General Topology, Heldermann, 1989.

[00005] [G] G. Gruenhage, Applications of a set-theoretic lemma, Proc. Amer. Math. Soc. 92 (1984), 133-140. | Zbl 0547.54015

[00006] [GK] G. Gruenhage and P. Koszmider, The Arkhangel'skiĭ-Tall problem: a consistent counterexample, Fund. Math. 149 (1996), 143-166. | Zbl 0862.54020

[00007] [GM] G. Gruenhage and E. Michael, A result on shrinkable open covers, Topology Proc. 8 (1983), 37-43. | Zbl 0547.54017

[00008] [K] K. Kunen, Set Theory, North-Holland, 1980.

[00009] [T] F. D. Tall, On the existence of normal metacompact Moore spaces which are not metrizable, Canad. J. Math. 26 (1974), 1-6.

[00010] [W1] S. Watson, Locally compact normal spaces in the constructible universe, ibid. 34 (1982), 1091-1095.

[00011] [W2] S. Watson, Locally compact normal metalindelöf spaces may not be paracompact: an application of uniformization and Suslin lines, Proc. Amer. Math. Soc. 98 (1986), 676-680. | Zbl 0604.54021

[00012] [W3] S. Watson, Problems I wish I could solve, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, Amsterdam, 1990, 37-76.