The Hausdorff dimension of the holonomy pseudogroup of a codimension-one foliation ℱ is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when ℱ is non-minimal, and to be equal to zero when ℱ is minimal with non-trivial leaf holonomy.
@article{bwmeta1.element.bwnjournal-article-fmv149i3p239bwm, author = {Takashi Inaba and Pawe\l\ Walczak}, title = {Transverse Hausdorff dimension of codim-1 C2-foliations}, journal = {Fundamenta Mathematicae}, volume = {149}, year = {1996}, pages = {239-244}, zbl = {0860.57021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p239bwm} }
Inaba, Takashi; Walczak, Paweł. Transverse Hausdorff dimension of codim-1 C2-foliations. Fundamenta Mathematicae, Tome 149 (1996) pp. 239-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-fmv149i3p239bwm/
[00000] [Ar] V. I. Arnold, Small denominators. I. Mappings of the circumference onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1962), 21-86 (in Russian); English transl.: Amer. Math. Soc. Transl. 46 (1965), 213-284.
[00001] [Ed] G. A. Edgar, Measure, Topology and Fractal Geometry, Undergrad. Texts in Math., Springer, New York, 1990.
[00002] [HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983.
[00003] [He] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 1-233. | Zbl 0448.58019
[00004] [La] C. Lamoureux, Quelques conditions d'existence de feuilles compactes, Ann. Inst. Fourier (Grenoble) 24 (4) (1974), 229-240. | Zbl 0287.57009
[00005] [Sa] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102. | Zbl 0136.20903
[00006] [Ta] I. Tamura, Topology of Foliations: An Introduction, Amer. Math. Soc., Providence, 1992.
[00007] [Wa] P. Walczak, Losing Hausdorff dimension while generating pseudogroups, this issue, 211-237. | Zbl 0861.54033